Acronym | doe | |||||||||||||||||||||||||||||||||||||
TOCID symbol | D | |||||||||||||||||||||||||||||||||||||
Name |
dodecahedron, cosmohedron, Goldberg polyhedron GP(1,0) | |||||||||||||||||||||||||||||||||||||
© © | ||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt[(9+3 sqrt(5))/8] = 1.401259 | |||||||||||||||||||||||||||||||||||||
Edge radius | (3+sqrt(5))/4 = 1.309017 | |||||||||||||||||||||||||||||||||||||
Inradius | sqrt[(25+11 sqrt(5))/40] = 1.113516 | |||||||||||||||||||||||||||||||||||||
Vertex figure | [53] = f3o | |||||||||||||||||||||||||||||||||||||
Vertex layers |
| |||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
x f f o o F F o o f f x | |||||||||||||||||||||||||||||||||||||
Coordinates |
| |||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | |||||||||||||||||||||||||||||||||||||
Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) | |||||||||||||||||||||||||||||||||||||
Volume | (15+7 sqrt(5))/4 = 7.663119 | |||||||||||||||||||||||||||||||||||||
Surface | 3 sqrt[25+10 sqrt(5)] = 20.645729 | |||||||||||||||||||||||||||||||||||||
Dual | ike | |||||||||||||||||||||||||||||||||||||
Dihedral angles |
| |||||||||||||||||||||||||||||||||||||
Face vector | 20, 30, 12 | |||||||||||||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||||||||||||
External links |
As abstract polytope doe is isomorphic to gissid, thereby replacing pentagons by pentagrams.
The number of ways to color the dodecahedron with different colors per face is 12!/60 = 7 983 360. – This is because the color group is the permutation group of 12 elements and has size 12!, while the order of the pure rotational icosahedral group is 60. (The reflectional icosahedral group would have twice as many, i.e. 120 elements.)
The right picture shows the single celled coastal coccolithophore (phytoplankton) with the latin name Braarudosphaera bigelowii.
Incidence matrix according to Dynkin symbol
o3o5x . . . | 20 | 3 | 3 ------+----+----+--- . . x | 2 | 30 | 2 ------+----+----+--- . o5x | 5 | 5 | 12 snubbed forms: o3o5β
o3/2o5x . . . | 20 | 3 | 3 --------+----+----+--- . . x | 2 | 30 | 2 --------+----+----+--- . o5x | 5 | 5 | 12
x5/4o3o . . . | 20 | 3 | 3 --------+----+----+--- x . . | 2 | 30 | 2 --------+----+----+--- x5/4o . | 5 | 5 | 12
x5/4o3/2o . . . | 20 | 3 | 3 ----------+----+----+--- x . . | 2 | 30 | 2 ----------+----+----+--- x5/4o . | 5 | 5 | 12
xfoo5oofx&#xt → outer heights = sqrt[(5+sqrt(5))/10] = 0.850651 inner height = sqrt[(5-sqrt(5))/10] = 0.525731 ({5} || pseudo f-{5} || dual pseudo f-{5} || dual {5}) o...5o... | 5 * * * | 2 1 0 0 0 | 1 2 0 0 .o..5.o.. | * 5 * * | 0 1 2 0 0 | 0 2 1 0 ..o.5..o. | * * 5 * | 0 0 2 1 0 | 0 1 2 0 ...o5...o | * * * 5 | 0 0 0 1 2 | 0 0 2 1 --------------+---------+------------+-------- x... .... | 2 0 0 0 | 5 * * * * | 1 1 0 0 oo..5oo..&#x | 1 1 0 0 | * 5 * * * | 0 2 0 0 .oo.5.oo.&#x | 0 1 1 0 | * * 10 * * | 0 1 1 0 ..oo5..oo&#x | 0 0 1 1 | * * * 5 * | 0 0 2 0 .... ...x | 0 0 0 2 | * * * * 5 | 0 0 1 1 --------------+---------+------------+-------- x...5o... | 5 0 0 0 | 5 0 0 0 0 | 1 * * * xfo. ....&#xt | 2 2 1 0 | 1 2 2 0 0 | * 5 * * .... .ofx&#xt | 0 1 2 2 | 0 0 2 2 1 | * * 5 * ...o5...x | 0 0 0 5 | 0 0 0 0 5 | * * * 1
or o...5o... & | 10 * | 2 1 0 | 1 2 .o..5.o.. & | * 10 | 0 1 2 | 0 3 -----------------+-------+----------+----- x... .... & | 2 0 | 10 * * | 1 1 oo..5oo..&#x & | 1 1 | * 10 * | 0 2 .oo.5.oo.&#x | 0 2 | * * 10 | 0 2 -----------------+-------+----------+----- x...5o... & | 5 0 | 5 0 0 | 2 * xfo. ....&#xt & | 2 3 | 1 2 2 | * 10
ofxfoo3oofxfo&#xt → outer heights = sqrt[(3-sqrt(5))/6] = 0.356822 tropal heights = 1/sqrt(3) = 0.577350 inner height = sqrt[(3+sqrt(5))/6] = 0.934172 (pt || pseudo f-{3} || pseudo (f,x)-{6} || pseudo (x,f)-{6} || pseudo dual f-{3} || pt) o.....3o..... | 1 * * * * * | 3 0 0 0 0 0 0 | 3 0 0 0 .o....3.o.... | * 3 * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 ..o...3..o... | * * 6 * * * | 0 1 1 1 0 0 0 | 1 1 1 0 ...o..3...o.. | * * * 6 * * | 0 0 0 1 1 1 0 | 0 1 1 1 ....o.3....o. | * * * * 3 * | 0 0 0 0 0 2 1 | 0 0 1 2 .....o3.....o | * * * * * 1 | 0 0 0 0 0 0 3 | 0 0 0 3 ------------------+-------------+---------------+-------- oo....3oo....&#x | 1 1 0 0 0 0 | 3 * * * * * * | 2 0 0 0 .oo...3.oo...&#x | 0 1 1 0 0 0 | * 6 * * * * * | 1 1 0 0 ..x... ...... | 0 0 2 0 0 0 | * * 3 * * * * | 1 0 1 0 ..oo..3..oo..&#x | 0 0 1 1 0 0 | * * * 6 * * * | 0 1 1 0 ...... ...x.. | 0 0 0 2 0 0 | * * * * 3 * * | 0 1 0 1 ...oo.3...oo.&#x | 0 0 0 1 1 0 | * * * * * 6 * | 0 0 1 1 ....oo3....oo&#x | 0 0 0 0 1 1 | * * * * * * 3 | 0 0 0 2 ------------------+-------------+---------------+-------- ofx... ......&#xt | 1 2 2 0 0 0 | 2 2 1 0 0 0 0 | 3 * * * ...... .ofx..&#xt | 0 1 2 2 0 0 | 0 2 0 2 1 0 0 | * 3 * * ..xfo. ......&#xt | 0 0 2 2 1 0 | 0 0 1 2 0 2 0 | * * 3 * ...... ...xfo&#xt | 0 0 0 2 2 1 | 0 0 0 0 1 2 2 | * * * 3
or o.....3o..... & | 2 * * | 3 0 0 0 | 3 0 .o....3.o.... & | * 6 * | 1 2 0 0 | 2 1 ..o...3..o... & | * * 12 | 0 1 1 1 | 1 2 ---------------------+--------+----------+---- oo....3oo....&#x & | 1 1 0 | 6 * * * | 2 0 .oo...3.oo...&#x & | 0 1 1 | * 12 * * | 1 1 ..x... ...... & | 0 0 2 | * * 6 * | 1 1 ..oo..3..oo..&#x | 0 0 2 | * * * 6 | 0 2 ---------------------+--------+----------+---- ofx... ......&#xt & | 1 2 2 | 2 2 1 0 | 6 * ...... .ofx..&#xt & | 0 1 4 | 0 2 1 2 | * 6
xfoFofx ofFxFfo&#xt (F=ff) → height(1,2) = height(3,4) = height(4,5) = height(6,7) = 1/2 height(2,3) = height(5,6) = (sqrt(5)-1)/4 = 0.309017 (line || pseudo f-{4} || pseudo ortho ff-line || pseudo (ff,x)-{4} || pseudo ortho ff-line || pseudo f-{4} || line) o...... o...... | 2 * * * * * * | 1 2 0 0 0 0 0 0 0 0 | 2 1 0 0 0 .o..... .o..... | * 4 * * * * * | 0 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 ..o.... ..o.... | * * 2 * * * * | 0 0 2 0 1 0 0 0 0 0 | 1 0 2 0 0 ...o... ...o... | * * * 4 * * * | 0 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 ....o.. ....o.. | * * * * 2 * * | 0 0 0 0 1 0 0 2 0 0 | 0 0 2 0 1 .....o. .....o. | * * * * * 4 * | 0 0 0 0 0 0 1 1 1 0 | 0 0 1 1 1 ......o ......o | * * * * * * 2 | 0 0 0 0 0 0 0 0 2 1 | 0 0 0 1 2 --------------------+---------------+---------------------+---------- x...... ....... | 2 0 0 0 0 0 0 | 1 * * * * * * * * * | 2 0 0 0 0 oo..... oo.....&#x | 1 1 0 0 0 0 0 | * 4 * * * * * * * * | 1 1 0 0 0 .oo.... .oo....&#x | 0 1 1 0 0 0 0 | * * 4 * * * * * * * | 1 0 1 0 0 .o.o... .o.o...&#x | 0 1 0 1 0 0 0 | * * * 4 * * * * * * | 0 1 1 0 0 ..o.o.. ..o.o..&#x | 0 0 1 0 1 0 0 | * * * * 2 * * * * * | 0 0 2 0 0 ....... ...x... | 0 0 0 2 0 0 0 | * * * * * 2 * * * * | 0 1 0 1 0 ...o.o. ...o.o.&#x | 0 0 0 1 0 1 0 | * * * * * * 4 * * * | 0 0 1 1 0 ....oo. ....oo.&#x | 0 0 0 0 1 1 0 | * * * * * * * 4 * * | 0 0 1 0 1 .....oo .....oo&#x | 0 0 0 0 0 1 1 | * * * * * * * * 4 * | 0 0 0 1 1 ......x ....... | 0 0 0 0 0 0 2 | * * * * * * * * * 1 | 0 0 0 0 2 --------------------+---------------+---------------------+---------- xfo.... .......&#xt | 2 2 1 0 0 0 0 | 1 2 2 0 0 0 0 0 0 0 | 2 * * * * ....... of.x...&#xt | 1 2 0 2 0 0 0 | 0 2 0 2 0 1 0 0 0 0 | * 2 * * * .ooooo. .ooooo.&#xr | 0 1 1 1 1 1 0 | 0 0 1 1 1 0 1 1 0 0 | * * 4 * * cycle (BCEFD) ....... ...x.fo&#xt | 0 0 0 2 0 2 1 | 0 0 0 0 0 1 2 0 2 0 | * * * 2 * ....ofx .......&#xt | 0 0 0 0 1 2 2 | 0 0 0 0 0 0 0 2 2 1 | * * * * 2
or o...... o...... & | 4 * * * | 1 2 0 0 0 0 | 2 1 0 .o..... .o..... & | * 8 * * | 0 1 1 1 0 0 | 1 1 1 ..o.... ..o.... & | * * 4 * | 0 0 2 0 1 0 | 1 0 2 ...o... ...o... | * * * 4 | 0 0 0 2 0 1 | 0 2 1 -----------------------+---------+-------------+------ x...... ....... & | 2 0 0 0 | 2 * * * * * | 2 0 0 oo..... oo.....&#x & | 1 1 0 0 | * 8 * * * * | 1 1 0 .oo.... .oo....&#x & | 0 1 1 0 | * * 8 * * * | 1 0 1 .o.o... .o.o...&#x & | 0 1 0 1 | * * * 8 * * | 0 1 1 ..o.o.. ..o.o..&#x | 0 0 2 0 | * * * * 2 * | 0 0 2 ....... ...x... | 0 0 0 2 | * * * * * 2 | 0 2 0 -----------------------+---------+-------------+------ xfo.... .......&#xt & | 2 2 1 0 | 1 2 2 0 0 0 | 4 * * ....... of.x...&#xt & | 1 2 0 2 | 0 2 0 2 0 1 | * 4 * .ooooo. .ooooo.&#xr | 0 2 2 1 | 0 0 2 2 1 0 | * * 4 cycle (BCEFD)
oxfF xFfo Fofx&#zx (F=ff) → existing heights = 0 (tegum sum of 3 mutually perp. (x,F)-{4} and an f-cube) o... o... o... | 4 * * * | 1 2 0 0 0 0 | 1 2 0 .o.. .o.. .o.. | * 4 * * | 0 0 1 2 0 0 | 2 0 1 ..o. ..o. ..o. | * * 8 * | 0 1 0 1 1 0 | 1 1 1 ...o ...o ...o | * * * 4 | 0 0 0 0 2 1 | 0 1 2 -------------------+---------+-------------+------ .... x... .... | 2 0 0 0 | 2 * * * * * | 0 2 0 o.o. o.o. o.o.&#x | 1 0 1 0 | * 8 * * * * | 1 1 0 .x.. .... .... | 0 2 0 0 | * * 2 * * * | 2 0 0 .oo. .oo. .oo.&#x | 0 1 1 0 | * * * 8 * * | 1 0 1 ..oo ..oo ..oo&#x | 0 0 1 1 | * * * * 8 * | 0 1 1 .... .... ...x | 0 0 0 2 | * * * * * 2 | 0 0 2 -------------------+---------+-------------+------ oxf. .... ....&#xt | 1 2 2 0 | 0 2 1 2 0 0 | 4 * * tower: B-C-A .... x.fo ....&#xt | 2 0 2 1 | 1 2 0 0 2 0 | * 4 * .... .... .ofx&#xt | 0 1 2 2 | 0 0 0 2 2 1 | * * 4
with inscribed tet subsym. (chiral choice) 4 * * | 3 0 0 | 3 inscribed tet vertices * 12 * | 1 1 1 | 3 neighbouring vertices (of 3 further tets) * * 4 | 0 0 3 | 3 remaining 5th inscribed tet vertices -------+---------+--- 1 1 0 | 12 * * | 2 0 2 0 | * 6 * | 2 0 1 1 | * * 12 | 2 -------+---------+--- 1 3 1 | 2 1 2 | 12
© 2004-2024 | top of page |