Acronym | rite (alt.: ikaidbicu) |
Name |
rectified ite, ikaid bicupola |
Circumradius | ... |
Lace city in approx. ASCII-art |
x5o o5o o5o o5f x5o x5o x5x o5x o5x f5o o5o o5o o5x |
x3o o3f f3o o3x F=ff=x+f=2x+v o3x x3f F3o f3f o3F f3x x3o x3o o3f f3o o3x | |
Dihedral angles |
|
Face vector | 54, 240, 252, 66 |
Confer |
|
Rectification wrt. a non-regular polytope is meant to be the singular instance of truncations on all vertices at such a depth that the hyperplane intersections on the former edges will coincide (provided such a choice exists). Within the specific case of ite as a pre-image these intersection points might differ on its 3 edge types. However, both this polychoron as well as the pre-image here is a bistratic blend of segmentochora, which in turn are diminishings of rectified and regular polychora respectively. From this embedding it well becomes clear that rectification here would apply none the less.
Its construction as segmentochoric bicupola moreover makes clear that it also happens to be a CRF.
Incidence matrix according to Dynkin symbol
rect( ouo3ooo5ooo&#ut = ite ) = xox3oxo5ooo&#xt → both heights = [sqrt(5)-1]/4 = 0.309017 (ike || pseudo id || ike) o..3o..5o.. | 12 * * ♦ 5 5 0 0 0 | 5 5 5 0 0 0 0 0 | 1 5 1 0 0 0 .o.3.o.5.o. | * 30 * | 0 2 4 2 0 | 0 1 4 2 2 1 4 0 | 0 2 2 2 2 0 ..o3..o5..o | * * 12 ♦ 0 0 0 5 5 | 0 0 0 0 0 5 5 5 | 0 0 0 5 1 1 ---------------+----------+----------------+-------------------------+---------------- x.. ... ... | 2 0 0 | 30 * * * * | 2 1 0 0 0 0 0 0 | 1 2 0 0 0 0 oo.3oo.5oo.&#x | 1 1 0 | * 60 * * * | 0 1 2 0 0 0 0 0 | 0 2 1 0 0 0 ... .x. ... | 0 2 0 | * * 60 * * | 0 0 1 1 1 0 1 0 | 0 1 1 1 1 0 .oo3.oo5.oo&#x | 0 1 1 | * * * 60 * | 0 0 0 0 0 1 2 0 | 0 0 0 2 1 0 ..x ... ... | 0 0 2 | * * * * 30 | 0 0 0 0 0 1 0 2 | 0 0 0 2 0 1 ---------------+----------+----------------+-------------------------+---------------- x..3o.. ... | 3 0 0 | 3 0 0 0 0 | 20 * * * * * * * | 1 1 0 0 0 0 xo. ... ...&#x | 2 1 0 | 1 2 0 0 0 | * 30 * * * * * * | 0 2 0 0 0 0 ... ox. ...&#x | 1 2 0 | 0 2 1 0 0 | * * 60 * * * * * | 0 1 1 0 0 0 .o.3.x. ... | 0 3 0 | 0 0 3 0 0 | * * * 20 * * * * | 0 1 0 1 0 0 ... .x.5.o. | 0 5 0 | 0 0 5 0 0 | * * * * 12 * * * | 0 0 1 0 1 0 .ox ... ...&#x | 0 1 2 | 0 0 0 2 1 | * * * * * 30 * * | 0 0 0 2 0 0 ... .xo ...&#x | 0 2 1 | 0 0 1 2 0 | * * * * * * 60 * | 0 0 0 1 1 0 ..x3..o ... | 0 0 3 | 0 0 0 0 3 | * * * * * * * 20 | 0 0 0 1 0 1 ---------------+----------+----------------+-------------------------+---------------- x..3o..5o.. ♦ 12 0 0 | 30 0 0 0 0 | 20 0 0 0 0 0 0 0 | 1 * * * * * xo.3ox. ...&#x ♦ 3 3 0 | 3 6 3 0 0 | 1 3 3 1 0 0 0 0 | * 20 * * * * ... ox.5oo.&#x ♦ 1 5 0 | 0 5 5 0 0 | 0 0 5 0 1 0 0 0 | * * 12 * * * .ox3.xo ...&#x ♦ 0 3 3 | 0 0 3 6 3 | 0 0 0 1 0 3 3 1 | * * * 20 * * ... .xo5.oo&#x ♦ 0 5 1 | 0 0 5 5 0 | 0 0 0 0 1 0 5 0 | * * * * 12 * ..x3..o5..o ♦ 0 0 12 | 0 0 0 0 30 | 0 0 0 0 0 0 0 20 | * * * * * 1
or o..3o..5o.. & | 24 * ♦ 5 5 0 | 5 5 5 0 0 | 1 5 1 .o.3.o.5.o. | * 30 | 0 4 4 | 0 2 8 2 2 | 0 4 4 -----------------+-------+-----------+-----------------+-------- x.. ... ... & | 2 0 | 60 * * | 2 1 0 0 0 | 1 2 0 oo.3oo.5oo.&#x & | 1 1 | * 120 * | 0 1 2 0 0 | 0 2 1 ... .x. ... | 0 2 | * * 60 | 0 0 2 1 1 | 0 2 2 -----------------+-------+-----------+-----------------+-------- x..3o.. ... & | 3 0 | 3 0 0 | 40 * * * * | 1 1 0 xo. ... ...&#x & | 2 1 | 1 2 0 | * 60 * * * | 0 2 0 ... ox. ...&#x & | 1 2 | 0 2 1 | * * 120 * * | 0 1 1 .o.3.x. ... | 0 3 | 0 0 3 | * * * 20 * | 0 2 0 ... .x.5.o. | 0 5 | 0 0 5 | * * * * 12 | 0 0 2 -----------------+-------+-----------+-----------------+-------- x..3o..5o.. & ♦ 12 0 | 30 0 0 | 20 0 0 0 0 | 2 * * xo.3ox. ...&#x & ♦ 3 3 | 3 6 3 | 1 3 3 1 0 | * 40 * ... ox.5oo.&#x & ♦ 1 5 | 0 5 5 | 0 0 5 0 1 | * * 24
© 2004-2025 | top of page |