Acronym suph
Name small petated hexadecaexon,
hexicated octaexon,
expanded octaexon
Circumradius 1
Lace city
in approx. ASCII-art
  o   h  		-- o3o3o3o3o3x (hop)
         
H   S   h		-- x3o3o3o3o3x (staf)
         
  H   o  		-- x3o3o3o3o3o (dual hop)

where:
o - o3o3o3o3o (point)
h - x3o3o3o3o (hix)
S - x3o3o3o3x (scad)
H - o3o3o3o3x (dual hix)
Confer
uniform relative:
laq  
related segmentoexa:
hopastaf  
External
links
wikipedia  

Incidence matrix according to Dynkin symbol

x3o3o3o3o3o3x

. . . . . . . | 56 |   6   6 |  15  30  15 |  20  60  60  20 |  15  60  90  60  15 |  6  30  60  60  30  6 | 1  6 15 20 15  6  1
--------------+----+---------+-------------+-----------------+---------------------+-----------------------+--------------------
x . . . . . . |  2 | 168   * |   5   5   0 |  10  20  10   0 |  10  30  30  10   0 |  5  20  30  20   5  0 | 1  5 10 10  5  1  0
. . . . . . x |  2 |   * 168 |   0   5   5 |   0  10  20  10 |   0  10  30  30  10 |  0   5  20  30  20  5 | 0  1  5 10 10  5  1
--------------+----+---------+-------------+-----------------+---------------------+-----------------------+--------------------
x3o . . . . . |  3 |   3   0 | 280   *   * |   4   4   0   0 |   6  12   6   0   0 |  4  12  12   4   0  0 | 1  4  6  4  1  0  0
x . . . . . x |  4 |   2   2 |   * 420   * |   0   4   4   0 |   0   6  12   6   0 |  0   4  12  12   4  0 | 0  1  4  6  4  1  0
. . . . . o3x |  3 |   0   3 |   *   * 280 |   0   0   4   4 |   0   0   6  12   6 |  0   0   4  12  12  4 | 0  0  1  4  6  4  1
--------------+----+---------+-------------+-----------------+---------------------+-----------------------+--------------------
x3o3o . . . .   4 |   6   0 |   4   0   0 | 280   *   *   * |   3   3   0   0   0 |  3   6   3   0   0  0 | 1  3  3  1  0  0  0
x3o . . . . x   6 |   6   3 |   2   3   0 |   * 560   *   * |   0   3   3   0   0 |  0   3   6   3   0  0 | 0  1  3  3  1  0  0
x . . . . o3x   6 |   3   6 |   0   3   2 |   *   * 560   * |   0   0   3   3   0 |  0   0   3   6   3  0 | 0  0  1  3  3  1  0
. . . . o3o3x   4 |   0   6 |   0   0   4 |   *   *   * 280 |   0   0   0   3   3 |  0   0   0   3   6  3 | 0  0  0  1  3  3  1
--------------+----+---------+-------------+-----------------+---------------------+-----------------------+--------------------
x3o3o3o . . .   5 |  10   0 |  10   0   0 |   5   0   0   0 | 168   *   *   *   * |  2   2   0   0   0  0 | 1  2  1  0  0  0  0
x3o3o . . . x   8 |  12   4 |   8   6   0 |   2   4   0   0 |   * 420   *   *   * |  0   2   2   0   0  0 | 0  1  2  1  0  0  0
x3o . . . o3x   9 |   9   9 |   3   9   3 |   0   3   3   0 |   *   * 560   *   * |  0   0   2   2   0  0 | 0  0  1  2  1  0  0
x . . . o3o3x   8 |   4  12 |   0   6   8 |   0   0   4   2 |   *   *   * 420   * |  0   0   0   2   2  0 | 0  0  0  1  2  1  0
. . . o3o3o3x   5 |   0  10 |   0   0  10 |   0   0   0   5 |   *   *   *   * 168 |  0   0   0   0   2  2 | 0  0  0  0  1  2  1
--------------+----+---------+-------------+-----------------+---------------------+-----------------------+--------------------
x3o3o3o3o . .   6 |  15   0 |  20   0   0 |  15   0   0   0 |   6   0   0   0   0 | 56   *   *   *   *  * | 1  1  0  0  0  0  0
x3o3o3o . . x  10 |  20   5 |  20  10   0 |  10  10   0   0 |   2   5   0   0   0 |  * 168   *   *   *  * | 0  1  1  0  0  0  0
x3o3o . . o3x  12 |  18  12 |  12  18   4 |   3  12   6   0 |   0   3   4   0   0 |  *   * 280   *   *  * | 0  0  1  1  0  0  0
x3o . . o3o3x  12 |  12  18 |   4  18  12 |   0   6  12   3 |   0   0   4   3   0 |  *   *   * 280   *  * | 0  0  0  1  1  0  0
x . . o3o3o3x  10 |   5  20 |   0  10  20 |   0   0  10  10 |   0   0   0   5   2 |  *   *   *   * 168  * | 0  0  0  0  1  1  0
. . o3o3o3o3x   6 |   0  15 |   0   0  20 |   0   0   0  15 |   0   0   0   0   6 |  *   *   *   *   * 56 | 0  0  0  0  0  1  1
--------------+----+---------+-------------+-----------------+---------------------+-----------------------+--------------------
x3o3o3o3o3o .   7 |  21   0 |  35   0   0 |  35   0   0   0 |  21   0   0   0   0 |  7   0   0   0   0  0 | 8  *  *  *  *  * *
x3o3o3o3o . x  12 |  30   6 |  40  15   0 |  30  20   0   0 |  12  15   0   0   0 |  2   6   0   0   0  0 | * 28  *  *  *  * *
x3o3o3o . o3x  15 |  30  15 |  30  30   5 |  15  30  10   0 |   3  15  10   0   0 |  0   3   5   0   0  0 | *  * 56  *  *  * *
x3o3o . o3o3x  16 |  24  24 |  16  36  16 |   4  24  24   4 |   0   6  16   6   0 |  0   0   4   4   0  0 | *  *  * 70  *  * *
x3o . o3o3o3x  15 |  15  30 |   5  30  30 |   0  10  30  15 |   0   0  10  15   3 |  0   0   0   5   3  0 | *  *  *  * 56  * *
x . o3o3o3o3x  12 |   6  30 |   0  15  40 |   0   0  20  30 |   0   0   0  15  12 |  0   0   0   0   6  2 | *  *  *  *  * 28 *
. o3o3o3o3o3x   7 |   0  21 |   0   0  35 |   0   0   0  35 |   0   0   0   0  21 |  0   0   0   0   0  7 | *  *  *  *  *  * 8
or
. . . . . . .    | 56 |  12 |  30  30 |  40  120 |  30 120  90 |  12  60 120 |  2 12  30 20
-----------------+----+-----+---------+----------+-------------+-------------+-------------
x . . . . . .  & |  2 | 336 |   5   5 |  10   30 |  10  40  30 |   5  25  50 |  1  6  15 10
-----------------+----+-----+---------+----------+-------------+-------------+-------------
x3o . . . . .  & |  3 |   3 | 560   * |   4    4 |   6  12   6 |   4  12  16 |  1  4   7  4
x . . . . . x    |  4 |   4 |   * 420 |   0    8 |   0  12  12 |   0   8  24 |  0  2   8  6
-----------------+----+-----+---------+----------+-------------+-------------+-------------
x3o3o . . . .  &   4 |   6 |   4   0 | 560    * |   3   3   0 |   3   6   3 |  1  3   3  1
x3o . . . . x  &   6 |   9 |   2   3 |   * 1120 |   0   3   3 |   0   3   9 |  0  1   4  3
-----------------+----+-----+---------+----------+-------------+-------------+-------------
x3o3o3o . . .  &   5 |  10 |  10   0 |   5    0 | 336   *   * |   2   2   0 |  1  2   1  0
x3o3o . . . x  &   8 |  16 |   8   6 |   2    4 |   * 840   * |   0   2   2 |  0  1   2  1
x3o . . . o3x      9 |  18 |   6   9 |   0    6 |   *   * 560 |   0   0   4 |  0  0   2  2
-----------------+----+-----+---------+----------+-------------+-------------+-------------
x3o3o3o3o . .  &   6 |  15 |  20   0 |  15    0 |   6   0   0 | 112   *   * |  1  1   0  0
x3o3o3o . . x  &  10 |  25 |  20  10 |  10   10 |   2   5   0 |   * 336   * |  0  1   1  0
x3o3o . . o3x  &  12 |  30 |  16  18 |   3   18 |   0   3   4 |   *   * 560 |  0  0   1  1
-----------------+----+-----+---------+----------+-------------+-------------+-------------
x3o3o3o3o3o .  &   7 |  21 |  35   0 |  35    0 |  21   0   0 |   7   0   0 | 16  *   *  *
x3o3o3o3o . x  &  12 |  36 |  40  15 |  30   20 |  12  15   0 |   2   6   0 |  * 56   *  *
x3o3o3o . o3x  &  15 |  45 |  35  30 |  15   40 |   3  15  10 |   0   3   5 |  *  * 112  *
x3o3o . o3o3x     16 |  48 |  32  36 |   8   24 |   0  12  16 |   0   0   8 |  *  *   * 70

xxo3ooo3ooo3ooo3ooo3oxx&#xt   → both heights = 2/sqrt(7) = 0.755929
(hop || pseudo staf || dual hop)

... 

© 2004-2019
top of page