Acronym | ek | ||
Name |
diacosipentacontahexazetton, octacross (β8), aeroyott(id), octaexal antiprism, vertex figure of vee, (one of the) Delone cell(s) of lattice E8, Gosset polytope 51,1, lattice C8 contact polytope (span of its small roots), equatorial cross-section of vertex-first vee | ||
Circumradius | 1/sqrt(2) = 0.707107 | ||
Inradius | 1/4 = 0.25 | ||
Lace city in approx. ASCII-art |
| ||
o3o3o3o3o3o x3o3o3o3o3o o3o3o3o3o3x o3o3o3o3o3o | |||
x o3o3o3o3o o x3o3o3o3o o o3o3o3o3x x o3o3o3o3o | |||
x3o o3o3o3o o3o x3o3o3o o3o o3o3o3x o3x o3o3o3o | |||
x3o3o o3o3o o3o3o x3o3o o3o3o o3o3x o3o3x o3o3o | |||
Coordinates | (1/sqrt(2), 0, 0, 0, 0, 0, 0, 0) & all permutations, all changes of sign | ||
Volume | 1/2520 = 0.00039683 | ||
Surface | 4/315 = 0.012698 | ||
Rel. Roundness | 105 π4/65536 = 15.606620 % | ||
Dual | octo | ||
Dihedral angles | |||
Face vector | 16, 112, 448, 1120, 1792, 1792, 1024, 256 | ||
Confer |
| ||
External links |
Incidence matrix according to Dynkin symbol
x3o3o3o3o3o3o4o . . . . . . . . | 16 ♦ 14 | 84 | 280 | 560 | 672 | 448 | 128 ----------------+----+-----+-----+------+------+------+------+---- x . . . . . . . | 2 | 112 ♦ 12 | 60 | 160 | 240 | 192 | 64 ----------------+----+-----+-----+------+------+------+------+---- x3o . . . . . . | 3 | 3 | 448 ♦ 10 | 40 | 80 | 80 | 32 ----------------+----+-----+-----+------+------+------+------+---- x3o3o . . . . . ♦ 4 | 6 | 4 | 1120 ♦ 8 | 24 | 32 | 16 ----------------+----+-----+-----+------+------+------+------+---- x3o3o3o . . . . ♦ 5 | 10 | 10 | 5 | 1792 ♦ 6 | 12 | 8 ----------------+----+-----+-----+------+------+------+------+---- x3o3o3o3o . . . ♦ 6 | 15 | 20 | 15 | 6 | 1792 | 4 | 4 ----------------+----+-----+-----+------+------+------+------+---- x3o3o3o3o3o . . ♦ 7 | 21 | 35 | 35 | 21 | 7 | 1024 | 2 ----------------+----+-----+-----+------+------+------+------+---- x3o3o3o3o3o3o . ♦ 8 | 28 | 56 | 70 | 56 | 28 | 8 | 256
x3o3o3o3o3o3o4/3o . . . . . . . . | 16 ♦ 14 | 84 | 280 | 560 | 672 | 448 | 128 ------------------+----+-----+-----+------+------+------+------+---- x . . . . . . . | 2 | 112 ♦ 12 | 60 | 160 | 240 | 192 | 64 ------------------+----+-----+-----+------+------+------+------+---- x3o . . . . . . | 3 | 3 | 448 ♦ 10 | 40 | 80 | 80 | 32 ------------------+----+-----+-----+------+------+------+------+---- x3o3o . . . . . ♦ 4 | 6 | 4 | 1120 ♦ 8 | 24 | 32 | 16 ------------------+----+-----+-----+------+------+------+------+---- x3o3o3o . . . . ♦ 5 | 10 | 10 | 5 | 1792 ♦ 6 | 12 | 8 ------------------+----+-----+-----+------+------+------+------+---- x3o3o3o3o . . . ♦ 6 | 15 | 20 | 15 | 6 | 1792 | 4 | 4 ------------------+----+-----+-----+------+------+------+------+---- x3o3o3o3o3o . . ♦ 7 | 21 | 35 | 35 | 21 | 7 | 1024 | 2 ------------------+----+-----+-----+------+------+------+------+---- x3o3o3o3o3o3o . ♦ 8 | 28 | 56 | 70 | 56 | 28 | 8 | 256
o3o3o *b3o3o3o3o3x . . . . . . . . | 16 ♦ 14 | 84 | 280 | 560 | 672 | 448 | 64 64 -------------------+----+-----+-----+------+------+------+------+-------- . . . . . . . x | 2 | 112 ♦ 12 | 60 | 160 | 240 | 192 | 32 32 -------------------+----+-----+-----+------+------+------+------+-------- . . . . . . o3x | 3 | 3 | 448 ♦ 10 | 40 | 80 | 80 | 16 16 -------------------+----+-----+-----+------+------+------+------+-------- . . . . . o3o3x ♦ 4 | 6 | 4 | 1120 ♦ 8 | 24 | 32 | 8 8 -------------------+----+-----+-----+------+------+------+------+-------- . . . . o3o3o3x ♦ 5 | 10 | 10 | 5 | 1792 ♦ 6 | 12 | 4 4 -------------------+----+-----+-----+------+------+------+------+-------- . . . o3o3o3o3x ♦ 6 | 15 | 20 | 15 | 6 | 1792 | 4 | 2 2 -------------------+----+-----+-----+------+------+------+------+-------- . o . *b3o3o3o3o3x ♦ 7 | 21 | 35 | 35 | 21 | 7 | 1024 | 1 1 -------------------+----+-----+-----+------+------+------+------+-------- o3o . *b3o3o3o3o3x ♦ 8 | 28 | 56 | 70 | 56 | 28 | 7 | 128 * . o3o *b3o3o3o3o3x ♦ 8 | 28 | 56 | 70 | 56 | 28 | 7 | * 128
xo3oo3oo3oo3oo3oo3ox&#x → height = 1/2
(oca || dual oca)
o.3o.3o.3o.3o.3o.3o. & | 16 ♦ 7 7 | 21 63 | 35 140 105 | 35 175 350 | 21 126 315 210 | 7 49 147 245 | 1 8 28 56 35
--------------------------+----+-------+---------+-------------+--------------+----------------+----------------+---------------
x. .. .. .. .. .. .. & | 2 | 56 * ♦ 6 6 | 15 30 15 | 20 60 80 | 15 60 105 60 | 6 30 66 90 | 1 6 16 26 15
oo3oo3oo3oo3oo3oo3oo&#x | 2 | * 56 ♦ 0 12 | 0 30 30 | 0 40 120 | 0 30 120 90 | 0 12 60 120 | 0 2 12 30 20
--------------------------+----+-------+---------+-------------+--------------+----------------+----------------+---------------
x.3o. .. .. .. .. .. & | 3 | 3 0 | 112 * ♦ 5 5 0 | 10 20 10 | 10 30 30 10 | 5 20 30 25 | 1 5 10 11 5
xo .. .. .. .. .. ..&#x & | 3 | 1 2 | * 336 ♦ 0 5 5 | 0 10 30 | 0 10 40 30 | 0 5 25 50 | 0 1 6 15 10
--------------------------+----+-------+---------+-------------+--------------+----------------+----------------+---------------
x.3o.3o. .. .. .. .. & ♦ 4 | 6 0 | 4 0 | 140 * * ♦ 4 4 0 | 6 12 6 0 | 4 12 12 4 | 1 4 6 4 1
xo3oo .. .. .. .. ..&#x & ♦ 4 | 3 3 | 1 3 | * 560 * ♦ 0 4 4 | 0 6 12 6 | 0 4 12 16 | 0 1 4 7 4
xo .. .. .. .. .. ox&#x ♦ 4 | 2 4 | 0 4 | * * 420 ♦ 0 0 8 | 0 0 12 12 | 0 0 8 24 | 0 0 2 8 6
--------------------------+----+-------+---------+-------------+--------------+----------------+----------------+---------------
x.3o.3o.3o. .. .. .. & ♦ 5 | 10 0 | 10 0 | 5 0 0 | 112 * * ♦ 3 3 0 0 | 3 6 3 0 | 1 3 3 1 0
xo3oo3oo .. .. .. ..&#x & ♦ 5 | 6 4 | 4 6 | 1 4 0 | * 560 * ♦ 0 3 3 0 | 0 3 6 3 | 0 1 3 3 1
xo3oo .. .. .. .. ox&#x & ♦ 5 | 4 6 | 1 9 | 0 2 3 | * * 1120 ♦ 0 0 3 3 | 0 0 3 9 | 0 0 1 4 3
--------------------------+----+-------+---------+-------------+--------------+----------------+----------------+---------------
x.3o.3o.3o.3o. .. .. & ♦ 6 | 15 0 | 20 0 | 15 0 0 | 6 0 0 | 56 * * * | 2 2 0 0 | 1 2 1 0 0
xo3oo3oo3oo .. .. ..&#x & ♦ 6 | 10 5 | 10 10 | 5 10 0 | 1 5 0 | * 336 * * | 0 2 2 0 | 0 1 2 1 0
xo3oo3oo .. .. .. ox&#x & ♦ 6 | 7 8 | 4 16 | 1 8 6 | 0 2 4 | * * 840 * | 0 0 2 2 | 0 0 1 2 1
xo3oo .. .. .. oo3ox&#x ♦ 6 | 6 9 | 2 18 | 0 6 9 | 0 0 6 | * * * 560 | 0 0 0 4 | 0 0 0 2 2
--------------------------+----+-------+---------+-------------+--------------+----------------+----------------+---------------
x.3o.3o.3o.3o.3o. .. & ♦ 7 | 21 0 | 35 0 | 35 0 0 | 21 0 0 | 7 0 0 0 | 16 * * * | 1 1 0 0 0
xo3oo3oo3oo3oo .. ..&#x & ♦ 7 | 15 6 | 20 15 | 15 20 0 | 6 15 0 | 1 6 0 0 | * 112 * * | 0 1 1 0 0
xo3oo3oo3oo .. .. ox&#x & ♦ 7 | 11 10 | 10 25 | 5 20 10 | 1 10 10 | 0 2 5 0 | * * 336 * | 0 0 1 1 0
xo3oo3oo .. .. oo3ox&#x & ♦ 7 | 9 12 | 5 30 | 1 16 18 | 0 3 18 | 0 0 3 4 | * * * 560 | 0 0 0 1 1
--------------------------+----+-------+---------+-------------+--------------+----------------+----------------+---------------
x.3o.3o.3o.3o.3o.3o. & ♦ 8 | 28 0 | 56 0 | 70 0 0 | 56 0 0 | 28 0 0 0 | 8 0 0 0 | 2 * * * *
xo3oo3oo3oo3oo3oo ..&#x & ♦ 8 | 21 7 | 35 21 | 35 35 0 | 21 35 0 | 7 21 0 0 | 1 7 0 0 | * 16 * * *
xo3oo3oo3oo3oo .. ox&#x & ♦ 8 | 16 12 | 20 36 | 15 40 15 | 6 30 20 | 1 12 15 0 | 0 2 6 0 | * * 56 * *
xo3oo3oo3oo .. oo3ox&#x & ♦ 8 | 13 15 | 11 45 | 5 35 30 | 1 15 40 | 0 3 15 10 | 0 0 3 5 | * * * 112 *
xo3oo3oo .. oo3oo3ox&#x ♦ 8 | 12 16 | 8 48 | 2 32 36 | 0 8 48 | 0 0 12 16 | 0 0 0 8 | * * * * 70
oqo xoo3ooo3ooo3ooo3ooo3oox&#xt → both heights = 1/sqrt(14) = 0.267261 (hop || perp pseudo q-line || dual hop) ...
xo3oo3oo4oo ox3oo3oo4oo&#zx → height = 0 (tegum product of 2 hex) o.3o.3o.4o. o.3o.3o.4o. & | 16 ♦ 6 8 | 12 72 | 8 128 144 | 80 480 | 288 384 | 448 | 128 ------------------------------+----+-------+--------+------------+----------+----------+------+---- x. .. .. .. .. .. .. .. & | 2 | 48 * ♦ 4 8 | 4 32 24 | 32 128 | 112 128 | 192 | 64 oo3oo3oo4oo oo3oo3oo4oo&#x | 2 | * 64 ♦ 0 12 | 0 24 36 | 16 144 | 96 144 | 192 | 64 ------------------------------+----+-------+--------+------------+----------+----------+------+---- x.3o. .. .. .. .. .. .. & | 3 | 3 0 | 64 * ♦ 2 8 0 | 16 24 | 48 32 | 80 | 32 xo .. .. .. .. .. .. ..&#x & | 3 | 1 2 | * 384 ♦ 0 4 6 | 4 36 | 32 48 | 80 | 32 ------------------------------+----+-------+--------+------------+----------+----------+------+---- x.3o.3o. .. .. .. .. .. & ♦ 4 | 6 0 | 4 0 | 32 * * ♦ 8 0 | 24 0 | 32 | 16 xo3oo .. .. .. .. .. ..&#x & ♦ 4 | 3 3 | 1 3 | * 512 * ♦ 2 6 | 12 12 | 32 | 16 xo .. .. .. ox .. .. ..&#x ♦ 4 | 2 4 | 0 4 | * * 576 ♦ 0 8 | 8 16 | 32 | 16 ------------------------------+----+-------+--------+------------+----------+----------+------+---- xo3oo3oo .. .. .. .. ..&#x & ♦ 5 | 6 4 | 4 6 | 1 4 0 | 256 * ♦ 6 0 | 12 | 8 xo3oo .. .. ox .. .. ..&#x & ♦ 5 | 4 6 | 1 9 | 0 2 3 | * 1536 ♦ 2 4 | 12 | 8 ------------------------------+----+-------+--------+------------+----------+----------+------+---- xo3oo3oo .. ox .. .. ..&#x & ♦ 6 | 7 8 | 4 16 | 1 8 6 | 2 4 | 768 * | 4 | 4 xo3oo .. .. ox3oo .. ..&#x ♦ 6 | 6 9 | 2 18 | 0 6 9 | 0 6 | * 1024 | 4 | 4 ------------------------------+----+-------+--------+------------+----------+----------+------+---- xo3oo3oo .. ox3oo .. ..&#x & ♦ 7 | 9 12 | 5 30 | 1 16 18 | 3 18 | 3 4 | 1024 | 2 ------------------------------+----+-------+--------+------------+----------+----------+------+---- xo3oo3oo .. ox3oo3oo ..&#x ♦ 8 | 12 16 | 8 48 | 2 32 36 | 8 48 | 12 16 | 8 | 256
xo3oo3oo *b3oo ox3oo3oo *f3oo&#zx → height = 0 (tegum product of 2 hex) o.3o.3o. *b3o. o.3o.3o. *f3o. & | 16 ♦ 6 8 | 12 72 | 4 4 128 144 | 40 40 480 | 144 144 384 | 224 224 | 32 64 32 ------------------------------------+----+-------+--------+---------------+--------------+--------------+---------+---------- x. .. .. .. .. .. .. .. & | 2 | 48 * ♦ 4 8 | 2 2 32 24 | 16 16 128 | 56 56 128 | 96 96 | 16 32 16 oo3oo3oo *b3oo oo3oo3oo *f3oo&#x | 2 | * 64 ♦ 0 12 | 0 0 24 36 | 8 8 144 | 48 48 144 | 96 96 | 16 32 16 ------------------------------------+----+-------+--------+---------------+--------------+--------------+---------+---------- x.3o. .. .. .. .. .. .. & | 3 | 3 0 | 64 * ♦ 1 1 8 0 | 8 8 24 | 24 24 32 | 40 40 | 8 16 8 xo .. .. .. .. .. .. ..&#x & | 3 | 1 2 | * 384 ♦ 0 0 4 6 | 2 2 36 | 16 16 48 | 40 40 | 8 16 8 ------------------------------------+----+-------+--------+---------------+--------------+--------------+---------+---------- x.3o.3o. .. .. .. .. .. & ♦ 4 | 6 0 | 4 0 | 16 * * * ♦ 8 0 0 | 24 0 0 | 32 0 | 8 8 0 x.3o. .. *b3o. .. .. .. .. & ♦ 4 | 6 0 | 4 0 | * 16 * * ♦ 0 8 0 | 0 24 0 | 0 32 | 0 8 8 xo3oo .. .. .. .. .. ..&#x & ♦ 4 | 3 3 | 1 3 | * * 512 * ♦ 1 1 6 | 6 6 12 | 16 16 | 4 8 4 xo .. .. .. ox .. .. ..&#x ♦ 4 | 2 4 | 0 4 | * * * 576 ♦ 0 0 8 | 4 4 16 | 16 16 | 4 8 4 ------------------------------------+----+-------+--------+---------------+--------------+--------------+---------+---------- xo3oo3oo .. .. .. .. ..&#x & ♦ 5 | 6 4 | 4 6 | 1 0 4 0 | 128 * * ♦ 6 0 0 | 12 0 | 4 4 0 xo3oo .. *b3oo .. .. .. ..&#x & ♦ 5 | 6 4 | 4 6 | 0 1 4 0 | * 128 * ♦ 0 6 0 | 0 12 | 0 4 4 xo3oo .. .. ox .. .. ..&#x & ♦ 5 | 4 6 | 1 9 | 0 0 2 3 | * * 1536 ♦ 1 1 4 | 6 6 | 2 4 2 ------------------------------------+----+-------+--------+---------------+--------------+--------------+---------+---------- xo3oo3oo .. ox .. .. ..&#x & ♦ 6 | 7 8 | 4 16 | 1 0 8 6 | 2 0 4 | 384 * * | 4 0 | 2 2 0 xo3oo .. *b3oo ox .. .. ..&#x & ♦ 6 | 7 8 | 4 16 | 0 1 8 6 | 0 2 4 | * 384 * | 0 4 | 0 2 2 xo3oo .. .. ox3oo .. ..&#x ♦ 6 | 6 9 | 2 18 | 0 0 6 9 | 0 0 6 | * * 1024 | 2 2 | 1 2 1 ------------------------------------+----+-------+--------+---------------+--------------+--------------+---------+---------- xo3oo3oo .. ox3oo .. ..&#x & ♦ 7 | 9 12 | 5 30 | 1 0 16 18 | 3 0 18 | 3 0 4 | 512 * | 1 1 0 xo3oo .. *b3oo ox3oo .. ..&#x & ♦ 7 | 9 12 | 5 30 | 0 1 16 18 | 0 3 18 | 0 3 4 | * 512 | 0 1 1 ------------------------------------+----+-------+--------+---------------+--------------+--------------+---------+---------- xo3oo3oo .. ox3oo3oo ..&#x ♦ 8 | 12 16 | 8 48 | 2 0 32 36 | 8 0 48 | 12 0 16 | 8 0 | 64 * * xo3oo3oo .. ox3oo .. *f3oo&#x & ♦ 8 | 12 16 | 8 48 | 1 1 32 36 | 4 4 48 | 6 6 16 | 4 4 | * 128 * xo3oo .. *b3oo ox3oo .. *f3oo&#x ♦ 8 | 12 16 | 8 48 | 0 2 32 36 | 0 8 48 | 0 12 16 | 0 8 | * * 64
xo3oo3oo4oo ox3oo3oo *f3oo&#zx → height = 0 (tegum product of 2 hex) o.3o.3o.4o. o.3o.3o. *f3o. | 8 * ♦ 6 8 0 | 12 48 24 0 | 8 96 144 32 0 0 | 64 288 192 8 8 | 192 384 48 48 | 256 96 96 | 64 64 .o3.o3.o4.o .o3.o3.o *f3.o | * 8 ♦ 0 8 6 | 0 24 48 12 | 0 32 144 96 4 4 | 16 192 288 32 32 | 96 384 96 96 | 192 128 128 | 64 64 ------------------------------+-----+----------+---------------+--------------------+-------------------+------------------+-------------+-------- x. .. .. .. .. .. .. .. | 2 0 | 24 * * ♦ 4 8 0 0 | 4 32 24 0 0 0 | 32 96 32 0 0 | 96 128 8 8 | 128 32 32 | 32 32 oo3oo3oo4oo oo3oo3oo *f3oo&#x | 1 1 | * 64 * ♦ 0 6 6 0 | 0 12 36 12 0 0 | 8 72 72 4 4 | 72 144 36 36 | 96 48 48 | 32 32 .. .. .. .. .x .. .. .. | 0 2 | * * 24 ♦ 0 0 8 4 | 0 0 24 32 2 2 | 0 32 96 16 16 | 16 128 48 48 | 64 64 64 | 32 32 ------------------------------+-----+----------+---------------+--------------------+-------------------+------------------+-------------+-------- x.3o. .. .. .. .. .. .. | 3 0 | 3 0 0 | 32 * * * ♦ 2 8 0 0 0 0 | 16 24 0 0 0 | 48 32 0 0 | 64 8 8 | 16 16 xo .. .. .. .. .. .. ..&#x | 2 1 | 1 2 0 | * 192 * * ♦ 0 4 6 0 0 0 | 4 24 12 0 0 | 24 48 4 4 | 48 16 16 | 16 16 .. .. .. .. ox .. .. ..&#x | 1 2 | 0 2 1 | * * 192 * ♦ 0 0 6 4 0 0 | 0 12 24 2 2 | 8 48 12 12 | 32 24 24 | 16 16 .. .. .. .. .x3.o .. .. | 0 3 | 0 0 3 | * * * 32 ♦ 0 0 0 8 1 1 | 0 0 24 8 8 | 0 32 24 24 | 16 32 32 | 16 16 ------------------------------+-----+----------+---------------+--------------------+-------------------+------------------+-------------+-------- x.3o.3o. .. .. .. .. .. ♦ 4 0 | 6 0 0 | 4 0 0 0 | 16 * * * * * ♦ 8 0 0 0 0 | 24 0 0 0 | 32 0 0 | 8 8 xo3oo .. .. .. .. .. ..&#x ♦ 3 1 | 3 3 0 | 1 3 0 0 | * 256 * * * * ♦ 2 6 0 0 0 | 12 12 0 0 | 24 4 4 | 8 8 xo .. .. .. ox .. .. ..&#x ♦ 2 2 | 1 4 1 | 0 2 2 0 | * * 576 * * * ♦ 0 4 4 0 0 | 4 16 2 2 | 16 8 8 | 8 8 .. .. .. .. ox3oo .. ..&#x ♦ 1 3 | 0 3 3 | 0 0 3 1 | * * * 256 * * ♦ 0 0 6 1 1 | 0 12 6 6 | 8 12 12 | 8 8 .. .. .. .. .x3.o3.o .. ♦ 0 4 | 0 0 6 | 0 0 0 4 | * * * * 8 * ♦ 0 0 0 8 0 | 0 0 24 0 | 0 32 0 | 16 0 .. .. .. .. .x3.o .. *f3.o ♦ 0 4 | 0 0 6 | 0 0 0 4 | * * * * * 8 ♦ 0 0 0 0 8 | 0 0 0 24 | 0 0 32 | 0 16 ------------------------------+-----+----------+---------------+--------------------+-------------------+------------------+-------------+-------- xo3oo3oo .. .. .. .. ..&#x ♦ 4 1 | 6 4 0 | 4 6 0 0 | 1 4 0 0 0 0 | 128 * * * * ♦ 6 0 0 0 | 12 0 0 | 4 4 xo3oo .. .. ox .. .. ..&#x ♦ 3 2 | 3 6 1 | 1 6 3 0 | 0 2 3 0 0 0 | * 768 * * * ♦ 2 4 0 0 | 8 2 2 | 4 4 xo .. .. .. ox3oo .. ..&#x ♦ 2 3 | 1 6 3 | 0 3 6 1 | 0 0 3 2 0 0 | * * 768 * * ♦ 0 4 1 1 | 4 4 4 | 4 4 .. .. .. .. ox3oo3oo ..&#x ♦ 1 4 | 0 4 6 | 0 0 6 4 | 0 0 0 4 1 0 | * * * 64 * ♦ 0 0 6 0 | 0 12 0 | 8 0 .. .. .. .. ox3oo .. *f3oo&#x ♦ 1 4 | 0 4 6 | 0 0 6 4 | 0 0 0 4 0 1 | * * * * 64 ♦ 0 0 0 6 | 0 0 12 | 0 8 ------------------------------+-----+----------+---------------+--------------------+-------------------+------------------+-------------+-------- xo3oo3oo .. ox .. .. ..&#x ♦ 4 2 | 6 8 1 | 4 12 4 0 | 1 8 6 0 0 0 | 2 4 0 0 0 | 384 * * * | 4 0 0 | 2 2 xo3oo .. .. ox3oo .. ..&#x ♦ 3 3 | 3 9 3 | 1 9 9 1 | 0 3 9 3 0 0 | 0 3 3 0 0 | * 1024 * * | 2 1 1 | 2 2 xo .. .. .. ox3oo3oo ..&#x ♦ 2 4 | 1 8 6 | 0 4 12 4 | 0 0 6 8 1 0 | 0 0 4 2 0 | * * 192 * | 0 4 0 | 4 0 xo .. .. .. ox3oo .. *f3oo&#x ♦ 2 4 | 1 8 6 | 0 4 12 4 | 0 0 6 8 0 1 | 0 0 4 0 2 | * * * 192 | 0 0 4 | 0 4 ------------------------------+-----+----------+---------------+--------------------+-------------------+------------------+-------------+-------- xo3oo3oo .. ox3oo .. ..&#x ♦ 4 3 | 6 12 3 | 4 18 12 1 | 1 12 18 4 0 0 | 3 12 6 0 0 | 3 4 0 0 | 512 * * | 1 1 xo3oo .. .. ox3oo3oo ..&#x ♦ 3 4 | 3 12 6 | 1 12 18 4 | 0 4 18 12 1 0 | 0 6 12 3 0 | 0 4 3 0 | * 256 * | 2 0 xo3oo .. .. ox3oo .. *f3oo&#x ♦ 3 4 | 3 12 6 | 1 12 18 4 | 0 4 18 12 0 1 | 0 6 12 0 3 | 0 4 0 3 | * * 256 | 0 2 ------------------------------+-----+----------+---------------+--------------------+-------------------+------------------+-------------+-------- xo3oo3oo .. ox3oo3oo ..&#x ♦ 4 4 | 6 16 6 | 4 24 24 4 | 1 16 36 16 1 0 | 4 24 24 4 0 | 6 16 6 0 | 4 4 0 | 128 * xo3oo3oo .. ox3oo .. *f3oo&#x ♦ 4 4 | 6 16 6 | 4 24 24 4 | 1 16 36 16 0 1 | 4 24 24 0 4 | 6 16 0 6 | 4 0 4 | * 128
© 2004-2025 | top of page |