Acronym | axh |
Name |
hexeractic hexacomb, 6D hypercubical honeycomb (δ6) |
Dual | (selfdual) |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x4o3o3o3o3o4o (N → ∞) . . . . . . . | N ♦ 12 | 60 | 160 | 240 | 192 | 64 --------------+----+-----+-----+-----+-----+-----+--- x . . . . . . | 2 | 6N ♦ 10 | 40 | 80 | 80 | 32 --------------+----+-----+-----+-----+-----+-----+--- x4o . . . . . | 4 | 4 | 15N ♦ 8 | 24 | 32 | 16 --------------+----+-----+-----+-----+-----+-----+--- x4o3o . . . . ♦ 8 | 12 | 6 | 20N ♦ 6 | 12 | 8 --------------+----+-----+-----+-----+-----+-----+--- x4o3o3o . . . ♦ 16 | 32 | 24 | 8 | 15N | 4 | 4 --------------+----+-----+-----+-----+-----+-----+--- x4o3o3o3o . . ♦ 32 | 80 | 80 | 40 | 10 | 6N | 2 --------------+----+-----+-----+-----+-----+-----+--- x4o3o3o3o3o . ♦ 64 | 192 | 240 | 160 | 60 | 12 | N
o3o3o *b3o3o3o4x (N → ∞) . . . . . . . | 2N ♦ 12 | 60 | 160 | 240 | 192 | 32 32 -----------------+----+-----+-----+-----+-----+-----+------ . . . . . . x | 2 | 12N ♦ 10 | 40 | 80 | 80 | 16 16 -----------------+----+-----+-----+-----+-----+-----+------ . . . . . o4x | 4 | 4 | 30N ♦ 8 | 24 | 32 | 8 8 -----------------+----+-----+-----+-----+-----+-----+------ . . . . o3o4x ♦ 8 | 12 | 6 | 40N ♦ 6 | 12 | 4 4 -----------------+----+-----+-----+-----+-----+-----+------ . . . o3o3o4x ♦ 16 | 32 | 24 | 8 | 30N | 4 | 2 2 -----------------+----+-----+-----+-----+-----+-----+------ . o . *b3o3o3o4x ♦ 32 | 80 | 80 | 40 | 10 | 12N | 1 1 -----------------+----+-----+-----+-----+-----+-----+------ o3o . *b3o3o3o4x ♦ 64 | 192 | 240 | 160 | 60 | 12 | N * . o3o *b3o3o3o4x ♦ 64 | 192 | 240 | 160 | 60 | 12 | * N
x4o3o3o3o3o4x (N → ∞) . . . . . . . | 64N ♦ 6 6 | 15 30 15 | 20 60 60 20 | 15 60 90 60 15 | 6 30 60 60 30 6 | 1 6 15 20 15 6 1 --------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+---------------------- x . . . . . . | 2 | 192N * ♦ 5 5 0 | 10 20 10 0 | 10 30 30 10 0 | 5 20 30 20 5 0 | 1 5 10 10 5 1 0 . . . . . . x | 2 | * 192N ♦ 0 5 5 | 0 10 20 10 | 0 10 30 30 10 | 0 5 20 30 20 5 | 0 1 5 10 10 5 1 --------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+---------------------- x4o . . . . . | 4 | 4 0 | 240N * * ♦ 4 4 0 0 | 6 12 6 0 0 | 4 12 12 4 0 0 | 1 4 6 4 1 0 0 x . . . . . x | 4 | 2 2 | * 480N * ♦ 0 4 4 0 | 0 6 12 6 0 | 0 4 12 12 4 0 | 0 1 4 6 4 1 0 . . . . . o4x | 4 | 0 4 | * * 240N ♦ 0 0 4 4 | 0 0 6 12 6 | 0 0 4 12 12 4 | 0 0 1 4 6 4 1 --------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+---------------------- x4o3o . . . . ♦ 8 | 12 0 | 6 0 0 | 160N * * * ♦ 3 3 0 0 0 | 3 6 3 0 0 0 | 1 3 3 1 0 0 0 x4o . . . . x ♦ 8 | 8 4 | 2 4 0 | * 480N * * ♦ 0 3 3 0 0 | 0 3 6 3 0 0 | 0 1 3 3 1 0 0 x . . . . o4x ♦ 8 | 4 8 | 0 4 2 | * * 480N * ♦ 0 0 3 3 0 | 0 0 3 6 3 0 | 0 0 1 3 3 1 0 . . . . o3o4x ♦ 8 | 0 12 | 0 0 6 | * * * 160N ♦ 0 0 0 3 3 | 0 0 0 3 6 3 | 0 0 0 1 3 3 1 --------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+---------------------- x4o3o3o . . . ♦ 16 | 32 0 | 24 0 0 | 8 0 0 0 | 60N * * * * | 2 2 0 0 0 0 | 1 2 1 0 0 0 0 x4o3o . . . x ♦ 16 | 24 8 | 12 12 0 | 2 6 0 0 | * 240N * * * | 0 2 2 0 0 0 | 0 1 2 1 0 0 0 x4o . . . o4x ♦ 16 | 16 16 | 4 16 4 | 0 4 4 0 | * * 360N * * | 0 0 2 2 0 0 | 0 0 1 2 1 0 0 x . . . o3o4x ♦ 16 | 8 24 | 0 12 12 | 0 0 6 2 | * * * 240N * | 0 0 0 2 2 0 | 0 0 0 1 2 1 0 . . . o3o3o4x ♦ 16 | 0 32 | 0 0 24 | 0 0 0 8 | * * * * 60N | 0 0 0 0 2 2 | 0 0 0 0 1 2 1 --------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+---------------------- x4o3o3o3o . . ♦ 32 | 80 0 | 80 0 0 | 40 0 0 0 | 10 0 0 0 0 | 12N * * * * * | 1 1 0 0 0 0 0 x4o3o3o . . x ♦ 32 | 64 16 | 48 32 0 | 16 24 0 0 | 2 8 0 0 0 | * 60N * * * * | 0 1 1 0 0 0 0 x4o3o . . o4x ♦ 32 | 48 32 | 24 48 8 | 4 24 12 0 | 0 4 6 0 0 | * * 120N * * * | 0 0 1 1 0 0 0 x4o . . o3o4x ♦ 32 | 32 48 | 8 48 24 | 0 12 24 4 | 0 0 6 4 0 | * * * 120N * * | 0 0 0 1 1 0 0 x . . o3o3o4x ♦ 32 | 16 64 | 0 32 48 | 0 0 24 16 | 0 0 0 8 2 | * * * * 60N * | 0 0 0 0 1 1 0 . . o3o3o3o4x ♦ 32 | 0 80 | 0 0 80 | 0 0 0 40 | 0 0 0 0 10 | * * * * * 12N | 0 0 0 0 0 1 1 --------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+---------------------- x4o3o3o3o3o . ♦ 64 | 192 0 | 240 0 0 | 160 0 0 0 | 60 0 0 0 0 | 12 0 0 0 0 0 | N * * * * * * x4o3o3o3o . x ♦ 64 | 160 32 | 160 80 0 | 80 80 0 0 | 20 40 0 0 0 | 2 10 0 0 0 0 | * 6N * * * * * x4o3o3o . o4x ♦ 64 | 128 64 | 96 128 16 | 32 96 32 0 | 4 32 24 0 0 | 0 4 8 0 0 0 | * * 15N * * * * x4o3o . o3o4x ♦ 64 | 96 96 | 48 144 48 | 8 72 72 8 | 0 12 36 12 0 | 0 0 6 6 0 0 | * * * 20N * * * x4o . o3o3o4x ♦ 64 | 64 128 | 16 128 96 | 0 32 96 32 | 0 0 24 32 4 | 0 0 0 8 4 0 | * * * * 15N * * x . o3o3o3o4x ♦ 64 | 32 160 | 0 80 160 | 0 0 80 80 | 0 0 0 40 20 | 0 0 0 0 10 2 | * * * * * 6N * . o3o3o3o3o4x ♦ 64 | 0 192 | 0 0 240 | 0 0 0 160 | 0 0 0 0 60 | 0 0 0 0 0 12 | * * * * * * N
x4o3o4o x4o3o4o (N → ∞) . . . . . . . . | N ♦ 6 6 | 12 36 12 | 8 72 72 8 | 48 144 48 | 96 96 | 64 ----------------+----+-------+-----------+-----------+-----------+-------+--- x . . . . . . . | 2 | 3N * ♦ 4 6 0 | 4 24 12 0 | 24 48 8 | 48 32 | 32 . . . . x . . . | 2 | * 3N ♦ 0 6 4 | 0 12 24 4 | 8 48 24 | 32 48 | 32 ----------------+----+-------+-----------+-----------+-----------+-------+--- x4o . . . . . . | 4 | 4 0 | 3N * * ♦ 2 6 0 0 | 12 12 0 | 24 8 | 16 x . . . x . . . | 4 | 2 2 | * 9N * ♦ 0 4 4 0 | 4 16 4 | 16 16 | 16 . . . . x4o . . | 4 | 0 4 | * * 3N ♦ 0 0 6 2 | 0 12 12 | 8 24 | 16 ----------------+----+-------+-----------+-----------+-----------+-------+--- x4o3o . . . . . ♦ 8 | 12 0 | 6 0 0 | N * * * ♦ 6 0 0 | 12 0 | 8 x4o . . x . . . ♦ 8 | 8 4 | 2 4 0 | * 9N * * ♦ 2 4 0 | 8 4 | 8 x . . . x4o . . ♦ 8 | 4 8 | 0 4 2 | * * 9N * ♦ 0 4 2 | 4 8 | 8 . . . . x4o3o . ♦ 8 | 0 12 | 0 0 6 | * * * N ♦ 0 0 6 | 0 12 | 8 ----------------+----+-------+-----------+-----------+-----------+-------+--- x4o3o . x . . . ♦ 16 | 24 8 | 12 12 0 | 2 6 0 0 | 3N * * | 4 0 | 4 x4o . . x4o . . ♦ 16 | 16 16 | 4 16 4 | 0 4 4 0 | * 9N * | 2 2 | 4 x . . . x4o3o . ♦ 16 | 8 24 | 0 12 12 | 0 0 6 2 | * * 3N | 0 4 | 4 ----------------+----+-------+-----------+-----------+-----------+-------+--- x4o3o . x4o . . ♦ 32 | 48 32 | 24 48 8 | 4 24 12 0 | 4 6 0 | 3N * | 2 x4o . . x4o3o . ♦ 32 | 32 48 | 8 48 24 | 0 12 24 4 | 0 6 4 | * 3N | 2 ----------------+----+-------+-----------+-----------+-----------+-------+--- x4o3o . x4o3o . ♦ 64 | 96 96 | 48 144 48 | 8 72 72 8 | 12 36 12 | 6 6 | N
© 2004-2025 | top of page |