Acronym axh
Name hexeractic hexacomb,
6D hypercubical honeycomb6)
Dual (selfdual)
Confer
more general:
xPo3o...o3o4o   xPo3o...o3oPxQ*a  
general polytopal classes:
hypercubical honeycomb   noble polytopes  
External
links
wikipedia   polytopewiki  

Incidence matrix according to Dynkin symbol

x4o3o3o3o3o4o   (N → ∞)

. . . . . . . |  N   12 |  60 | 160 | 240 | 192 | 64
--------------+----+-----+-----+-----+-----+-----+---
x . . . . . . |  2 |  6N   10 |  40 |  80 |  80 | 32
--------------+----+-----+-----+-----+-----+-----+---
x4o . . . . . |  4 |   4 | 15N    8 |  24 |  32 | 16
--------------+----+-----+-----+-----+-----+-----+---
x4o3o . . . .   8 |  12 |   6 | 20N    6 |  12 |  8
--------------+----+-----+-----+-----+-----+-----+---
x4o3o3o . . .  16 |  32 |  24 |   8 | 15N |   4 |  4
--------------+----+-----+-----+-----+-----+-----+---
x4o3o3o3o . .  32 |  80 |  80 |  40 |  10 |  6N |  2
--------------+----+-----+-----+-----+-----+-----+---
x4o3o3o3o3o .  64 | 192 | 240 | 160 |  60 |  12 |  N

o3o3o *b3o3o3o4x   (N → ∞)

. . .    . . . . | 2N   12 |  60 | 160 | 240 | 192 | 32 32
-----------------+----+-----+-----+-----+-----+-----+------
. . .    . . . x |  2 | 12N   10 |  40 |  80 |  80 | 16 16
-----------------+----+-----+-----+-----+-----+-----+------
. . .    . . o4x |  4 |   4 | 30N    8 |  24 |  32 |  8  8
-----------------+----+-----+-----+-----+-----+-----+------
. . .    . o3o4x   8 |  12 |   6 | 40N    6 |  12 |  4  4
-----------------+----+-----+-----+-----+-----+-----+------
. . .    o3o3o4x  16 |  32 |  24 |   8 | 30N |   4 |  2  2
-----------------+----+-----+-----+-----+-----+-----+------
. o . *b3o3o3o4x  32 |  80 |  80 |  40 |  10 | 12N |  1  1
-----------------+----+-----+-----+-----+-----+-----+------
o3o . *b3o3o3o4x  64 | 192 | 240 | 160 |  60 |  12 |  N  *
. o3o *b3o3o3o4x  64 | 192 | 240 | 160 |  60 |  12 |  *  N

x4o3o3o3o3o4x   (N → ∞)

. . . . . . . | 64N     6    6 |   15   30   15 |   20   60   60   20 |  15   60   90   60  15 |   6  30   60   60  30   6 | 1  6  15  20  15  6 1
--------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+----------------------
x . . . . . . |   2 | 192N    *     5    5    0 |   10   20   10    0 |  10   30   30   10   0 |   5  20   30   20   5   0 | 1  5  10  10   5  1 0
. . . . . . x |   2 |    * 192N     0    5    5 |    0   10   20   10 |   0   10   30   30  10 |   0   5   20   30  20   5 | 0  1   5  10  10  5 1
--------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+----------------------
x4o . . . . . |   4 |    4    0 | 240N    *    *     4    4    0    0 |   6   12    6    0   0 |   4  12   12    4   0   0 | 1  4   6   4   1  0 0
x . . . . . x |   4 |    2    2 |    * 480N    *     0    4    4    0 |   0    6   12    6   0 |   0   4   12   12   4   0 | 0  1   4   6   4  1 0
. . . . . o4x |   4 |    0    4 |    *    * 240N     0    0    4    4 |   0    0    6   12   6 |   0   0    4   12  12   4 | 0  0   1   4   6  4 1
--------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+----------------------
x4o3o . . . .    8 |   12    0 |    6    0    0 | 160N    *    *    *    3    3    0    0   0 |   3   6    3    0   0   0 | 1  3   3   1   0  0 0
x4o . . . . x    8 |    8    4 |    2    4    0 |    * 480N    *    *    0    3    3    0   0 |   0   3    6    3   0   0 | 0  1   3   3   1  0 0
x . . . . o4x    8 |    4    8 |    0    4    2 |    *    * 480N    *    0    0    3    3   0 |   0   0    3    6   3   0 | 0  0   1   3   3  1 0
. . . . o3o4x    8 |    0   12 |    0    0    6 |    *    *    * 160N    0    0    0    3   3 |   0   0    0    3   6   3 | 0  0   0   1   3  3 1
--------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+----------------------
x4o3o3o . . .   16 |   32    0 |   24    0    0 |    8    0    0    0 | 60N    *    *    *   * |   2   2    0    0   0   0 | 1  2   1   0   0  0 0
x4o3o . . . x   16 |   24    8 |   12   12    0 |    2    6    0    0 |   * 240N    *    *   * |   0   2    2    0   0   0 | 0  1   2   1   0  0 0
x4o . . . o4x   16 |   16   16 |    4   16    4 |    0    4    4    0 |   *    * 360N    *   * |   0   0    2    2   0   0 | 0  0   1   2   1  0 0
x . . . o3o4x   16 |    8   24 |    0   12   12 |    0    0    6    2 |   *    *    * 240N   * |   0   0    0    2   2   0 | 0  0   0   1   2  1 0
. . . o3o3o4x   16 |    0   32 |    0    0   24 |    0    0    0    8 |   *    *    *    * 60N |   0   0    0    0   2   2 | 0  0   0   0   1  2 1
--------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+----------------------
x4o3o3o3o . .   32 |   80    0 |   80    0    0 |   40    0    0    0 |  10    0    0    0   0 | 12N   *    *    *   *   * | 1  1   0   0   0  0 0
x4o3o3o . . x   32 |   64   16 |   48   32    0 |   16   24    0    0 |   2    8    0    0   0 |   * 60N    *    *   *   * | 0  1   1   0   0  0 0
x4o3o . . o4x   32 |   48   32 |   24   48    8 |    4   24   12    0 |   0    4    6    0   0 |   *   * 120N    *   *   * | 0  0   1   1   0  0 0
x4o . . o3o4x   32 |   32   48 |    8   48   24 |    0   12   24    4 |   0    0    6    4   0 |   *   *    * 120N   *   * | 0  0   0   1   1  0 0
x . . o3o3o4x   32 |   16   64 |    0   32   48 |    0    0   24   16 |   0    0    0    8   2 |   *   *    *    * 60N   * | 0  0   0   0   1  1 0
. . o3o3o3o4x   32 |    0   80 |    0    0   80 |    0    0    0   40 |   0    0    0    0  10 |   *   *    *    *   * 12N | 0  0   0   0   0  1 1
--------------+-----+-----------+----------------+---------------------+------------------------+---------------------------+----------------------
x4o3o3o3o3o .   64 |  192    0 |  240    0    0 |  160    0    0    0 |  60    0    0    0   0 |  12   0    0    0   0   0 | N  *   *   *   *  * *
x4o3o3o3o . x   64 |  160   32 |  160   80    0 |   80   80    0    0 |  20   40    0    0   0 |   2  10    0    0   0   0 | * 6N   *   *   *  * *
x4o3o3o . o4x   64 |  128   64 |   96  128   16 |   32   96   32    0 |   4   32   24    0   0 |   0   4    8    0   0   0 | *  * 15N   *   *  * *
x4o3o . o3o4x   64 |   96   96 |   48  144   48 |    8   72   72    8 |   0   12   36   12   0 |   0   0    6    6   0   0 | *  *   * 20N   *  * *
x4o . o3o3o4x   64 |   64  128 |   16  128   96 |    0   32   96   32 |   0    0   24   32   4 |   0   0    0    8   4   0 | *  *   *   * 15N  * *
x . o3o3o3o4x   64 |   32  160 |    0   80  160 |    0    0   80   80 |   0    0    0   40  20 |   0   0    0    0  10   2 | *  *   *   *   * 6N *
. o3o3o3o3o4x   64 |    0  192 |    0    0  240 |    0    0    0  160 |   0    0    0    0  60 |   0   0    0    0   0  12 | *  *   *   *   *  * N

x4o3o4o x4o3o4o   (N → ∞)

. . . . . . . . |  N   6  6 | 12  36 12 | 8 72 72 8 | 48 144 48 | 96 96 | 64
----------------+----+-------+-----------+-----------+-----------+-------+---
x . . . . . . . |  2 | 3N  *   4   6  0 | 4 24 12 0 | 24  48  8 | 48 32 | 32
. . . . x . . . |  2 |  * 3N   0   6  4 | 0 12 24 4 |  8  48 24 | 32 48 | 32
----------------+----+-------+-----------+-----------+-----------+-------+---
x4o . . . . . . |  4 |  4  0 | 3N   *  *  2  6  0 0 | 12  12  0 | 24  8 | 16
x . . . x . . . |  4 |  2  2 |  *  9N  *  0  4  4 0 |  4  16  4 | 16 16 | 16
. . . . x4o . . |  4 |  0  4 |  *   * 3N  0  0  6 2 |  0  12 12 |  8 24 | 16
----------------+----+-------+-----------+-----------+-----------+-------+---
x4o3o . . . . .   8 | 12  0 |  6   0  0 | N  *  * *   6   0  0 | 12  0 |  8
x4o . . x . . .   8 |  8  4 |  2   4  0 | * 9N  * *   2   4  0 |  8  4 |  8
x . . . x4o . .   8 |  4  8 |  0   4  2 | *  * 9N *   0   4  2 |  4  8 |  8
. . . . x4o3o .   8 |  0 12 |  0   0  6 | *  *  * N   0   0  6 |  0 12 |  8
----------------+----+-------+-----------+-----------+-----------+-------+---
x4o3o . x . . .  16 | 24  8 | 12  12  0 | 2  6  0 0 | 3N   *  * |  4  0 |  4
x4o . . x4o . .  16 | 16 16 |  4  16  4 | 0  4  4 0 |  *  9N  * |  2  2 |  4
x . . . x4o3o .  16 |  8 24 |  0  12 12 | 0  0  6 2 |  *   * 3N |  0  4 |  4
----------------+----+-------+-----------+-----------+-----------+-------+---
x4o3o . x4o . .  32 | 48 32 | 24  48  8 | 4 24 12 0 |  4   6  0 | 3N  * |  2
x4o . . x4o3o .  32 | 32 48 |  8  48 24 | 0 12 24 4 |  0   6  4 |  * 3N |  2
----------------+----+-------+-----------+-----------+-----------+-------+---
x4o3o . x4o3o .  64 | 96 96 | 48 144 48 | 8 72 72 8 | 12  36 12 |  6  6 |  N

© 2004-2025
top of page