Acronym ...
Name oFfoo3ooxxF3Fxoxo3ooffx&#zx
Confer
uniform relative:
ex  
related CRFs:
xAFxx3ooxxF3Fxoxo3ooffx&#zx  
general polytopal classes:
expanded kaleido-facetings  

The relation to ex runs as follows: ex in pentic subsymmetry can be given as xffoo3oxoof3fooxo3ooffx&#zx. That will be transformed into (-x)ffoo3xxoof3fooxo3ooffx&#zx. Then into offoo3(-x)xoof3Fooxo3ooffx&#zx. Finally once more into oFfoo3(-x)(-x)oof3Fxoxo3ooffx&#zx. Then a Stott expansion wrt. the second node produces this polychoron.

The non-existing lacings calculate to vertex distances according to f=(1+sqrt(5))/2.


Incidence matrix according to Dynkin symbol

oFfoo3ooxxF3Fxoxo3ooffx&#zx   → all heights = 0 – except those of the not existing lacing(1,2), lacing(1,3), lacing(1,5), lacing(2,4), and lacing(2,5)

o....3o....3o....3o....     | 10  *  *  *  *   6  0   0  0   0  0  0  0  0  0 |  6  3  0  0  0  0  0  0  0  0   0  0  0  0  0 |  2  3 0  0  0  0  0 0
.o...3.o...3.o...3.o...     |  * 30  *  *  * |  0  4   4  0   0  0  0  0  0  0 |  0  0  2  2  2  4  2  0  0  0   0  0  0  0  0 |  0  1 1  2  2  0  0 0
..o..3..o..3..o..3..o..     |  *  * 60  *  * |  0  0   2  2   2  1  0  0  0  0 |  0  0  0  0  2  1  2  1  2  1   2  0  0  0  0 |  0  2 0  1  1  1  1 0
...o.3...o.3...o.3...o.     |  *  *  * 60  * |  1  0   0  0   2  0  2  1  1  0 |  2  1  0  0  0  0  0  0  2  2   2  1  2  1  0 |  1  2 0  0  0  2  2 1
....o3....o3....o3....o     |  *  *  *  * 30 |  0  0   0  0   0  2  0  0  2  2 |  0  2  0  0  0  0  4  0  0  0   4  0  0  1  1 |  0  4 0  0  2  0  2 0
----------------------------+----------------+---------------------------------+-----------------------------------------------+----------------------
o..o.3o..o.3o..o.3o..o.&#x  |  1  0  0  1  0 | 60  *   *  *   *  *  *  *  *  * |  2  1  0  0  0  0  0  0  0  0   0  0  0  0  0 |  1  2 0  0  0  0  0 0
..... ..... .x... .....     |  0  2  0  0  0 |  * 60   *  *   *  *  *  *  *  * |  0  0  1  1  0  1  0  0  0  0   0  0  0  0  0 |  0  0 1  1  1  0  0 0
.oo..3.oo..3.oo..3.oo..&#x  |  0  1  1  0  0 |  *  * 120  *   *  *  *  *  *  * |  0  0  0  0  1  1  1  0  0  0   0  0  0  0  0 |  0  1 0  1  1  0  0 0
..... ..x.. ..... .....     |  0  0  2  0  0 |  *  *   * 60   *  *  *  *  *  * |  0  0  0  0  1  0  0  1  1  0   0  0  0  0  0 |  0  1 0  1  0  1  0 0
..oo.3..oo.3..oo.3..oo.&#x  |  0  0  1  1  0 |  *  *   *  * 120  *  *  *  *  * |  0  0  0  0  0  0  0  0  1  1   1  0  0  0  0 |  0  1 0  0  0  1  1 0
..o.o3..o.o3..o.o3..o.o&#x  |  0  0  1  0  1 |  *  *   *  *   * 60  *  *  *  * |  0  0  0  0  0  0  2  0  0  0   2  0  0  0  0 |  0  2 0  0  1  0  1 0
..... ...x. ..... .....     |  0  0  0  2  0 |  *  *   *  *   *  * 60  *  *  * |  1  0  0  0  0  0  0  0  1  0   0  1  1  0  0 |  1  1 0  0  0  1  0 1
..... ..... ...x. .....     |  0  0  0  2  0 |  *  *   *  *   *  *  * 30  *  * |  0  0  0  0  0  0  0  0  0  2   0  0  2  1  0 |  0  0 0  0  0  2  2 1
...oo3...oo3...oo3...oo&#x  |  0  0  0  1  1 |  *  *   *  *   *  *  *  * 60  * |  0  1  0  0  0  0  0  0  0  0   2  0  0  1  0 |  0  2 0  0  0  0  2 0
..... ..... ..... ....x     |  0  0  0  0  2 |  *  *   *  *   *  *  *  *  * 30 |  0  1  0  0  0  0  2  0  0  0   0  0  0  0  1 |  0  2 0  0  2  0  0 0
----------------------------+----------------+---------------------------------+-----------------------------------------------+----------------------
..... o..x. ..... .....&#x  |  1  0  0  2  0 |  2  0   0  0   0  0  1  0  0  0 | 60  *  *  *  *  *  *  *  *  *   *  *  *  *  * |  1  1 0  0  0  0  0 0
..... ..... ..... o..fx&#zx |  1  0  0  2  2 |  2  0   0  0   0  0  0  0  2  1 |  * 30  *  *  *  *  *  *  *  *   *  *  *  *  * |  0  2 0  0  0  0  0 0
..... .o...3.x... .....     |  0  3  0  0  0 |  0  3   0  0   0  0  0  0  0  0 |  *  * 20  *  *  *  *  *  *  *   *  *  *  *  * |  0  0 1  1  0  0  0 0
..... ..... .x...3.o...     |  0  3  0  0  0 |  0  3   0  0   0  0  0  0  0  0 |  *  *  * 20  *  *  *  *  *  *   *  *  *  *  * |  0  0 1  0  1  0  0 0
..... .ox.. ..... .....&#x  |  0  1  2  0  0 |  0  0   2  1   0  0  0  0  0  0 |  *  *  *  * 60  *  *  *  *  *   *  *  *  *  * |  0  1 0  1  0  0  0 0
..... ..... .xo.. .....&#x  |  0  2  1  0  0 |  0  1   2  0   0  0  0  0  0  0 |  *  *  *  *  * 60  *  *  *  *   *  *  *  *  * |  0  0 0  1  1  0  0 0
..... ..... ..... .of.x&#zx |  0  1  2  0  2 |  0  0   2  0   0  2  0  0  0  1 |  *  *  *  *  *  * 60  *  *  *   *  *  *  *  * |  0  1 0  0  1  0  0 0
..... ..x..3..o.. .....     |  0  0  3  0  0 |  0  0   0  3   0  0  0  0  0  0 |  *  *  *  *  *  *  * 20  *  *   *  *  *  *  * |  0  0 0  1  0  1  0 0
..... ..xx. ..... .....&#x  |  0  0  2  2  0 |  0  0   0  1   2  0  1  0  0  0 |  *  *  *  *  *  *  *  * 60  *   *  *  *  *  * |  0  1 0  0  0  1  0 0
..... ..... ..ox. .....&#x  |  0  0  1  2  0 |  0  0   0  0   2  0  0  1  0  0 |  *  *  *  *  *  *  *  *  * 60   *  *  *  *  * |  0  0 0  0  0  1  1 0
..ooo3..ooo3..ooo3..ooo&#x  |  0  0  1  1  1 |  0  0   0  0   1  1  0  0  1  0 |  *  *  *  *  *  *  *  *  *  * 120  *  *  *  * |  0  1 0  0  0  0  1 0
...o.3...x. ..... .....     |  0  0  0  3  0 |  0  0   0  0   0  0  3  0  0  0 |  *  *  *  *  *  *  *  *  *  *   * 20  *  *  * |  1  0 0  0  0  0  0 1
..... ...x.3...x. .....     |  0  0  0  6  0 |  0  0   0  0   0  0  3  3  0  0 |  *  *  *  *  *  *  *  *  *  *   *  * 20  *  * |  0  0 0  0  0  1  0 1
..... ..... ...xo .....&#x  |  0  0  0  2  1 |  0  0   0  0   0  0  0  1  2  0 |  *  *  *  *  *  *  *  *  *  *   *  *  * 30  * |  0  0 0  0  0  0  2 0
..... ..... ....o3....x     |  0  0  0  0  3 |  0  0   0  0   0  0  0  0  0  3 |  *  *  *  *  *  *  *  *  *  *   *  *  *  * 10 |  0  0 0  0  2  0  0 0
----------------------------+----------------+---------------------------------+-----------------------------------------------+----------------------
o..o.3o..x. ..... .....&#x    1  0  0  3  0 |  3  0   0  0   0  0  3  0  0  0 |  3  0  0  0  0  0  0  0  0  0   0  1  0  0  0 | 20  * *  *  *  *  * *
..... ooxxF ..... ooffx&#zx   1  1  4  4  4 |  4  0   4  2   4  4  2  0  4  2 |  2  2  0  0  2  0  2  0  2  0   4  0  0  0  0 |  * 30 *  *  *  *  * * (tower: 14532)
..... .o...3.x...3.o...       0  6  0  0  0 |  0 12   0  0   0  0  0  0  0  0 |  0  0  4  4  0  0  0  0  0  0   0  0  0  0  0 |  *  * 5  *  *  *  * *
..... .ox..3.xo.. .....&#x    0  3  3  0  0 |  0  3   6  3   0  0  0  0  0  0 |  0  0  1  0  3  3  0  1  0  0   0  0  0  0  0 |  *  * * 20  *  *  * *
..... ..... .xo.o3.of.x&#xt   0  3  3  0  3 |  0  3   6  0   0  3  0  0  0  3 |  0  0  0  1  0  3  3  0  0  0   0  0  0  0  1 |  *  * *  * 20  *  * *
..... ..xx.3..ox. .....&#x    0  0  3  6  0 |  0  0   0  3   6  0  3  3  0  0 |  0  0  0  0  0  0  0  1  3  3   0  0  1  0  0 |  *  * *  *  * 20  * *
..... ..... ..oxo .....&#x    0  0  1  2  1 |  0  0   0  0   2  1  0  1  2  0 |  0  0  0  0  0  0  0  0  0  1   2  0  0  1  0 |  *  * *  *  *  * 60 *
...o.3...x.3...x. .....       0  0  0 12  0 |  0  0   0  0   0  0 12  6  0  0 |  0  0  0  0  0  0  0  0  0  0   0  4  4  0  0 |  *  * *  *  *  *  * 5

© 2004-2018
top of page