Acronym ...
Name ((oFfoo3ooxxF3Fxoxo3ooffx))&#zx
Face vector 190, 660, 650, 180
Confer
uniform relative:
ex  
related CRFs:
((xAFxx3ooxxF3Fxoxo3ooffx))&#zx  
general polytopal classes:
expanded kaleido-facetings  

The relation to ex runs as follows: ex in pentic subsymmetry can be given as ((xffoo3oxoof3fooxo3ooffx))&#zx. That will be transformed into (((-x)ffoo3xxoof3fooxo3ooffx))&#zx. Then into ((offoo3(-x)xoof3Fooxo3ooffx))&#zx. Finally once more into ((oFfoo3(-x)(-x)oof3Fxoxo3ooffx))&#zx. Then a Stott expansion wrt. the second node produces this polychoron.

The non-existing lacings calculate to vertex distances according to f=(1+sqrt(5))/2.


Incidence matrix according to Dynkin symbol

((oFfoo3ooxxF3Fxoxo3ooffx))&#zx   → all heights = 0 – except those of the not existing lacing(1,2), lacing(1,3), lacing(1,5), lacing(2,4), and lacing(2,5)

  o....3o....3o....3o....       | 10  *  *  *  *   6  0   0  0   0  0  0  0  0  0 |  6  3  0  0  0  0  0  0  0  0   0  0  0  0  0 |  2  3 0  0  0  0  0 0
  .o...3.o...3.o...3.o...       |  * 30  *  *  * |  0  4   4  0   0  0  0  0  0  0 |  0  0  2  2  2  4  2  0  0  0   0  0  0  0  0 |  0  1 1  2  2  0  0 0
  ..o..3..o..3..o..3..o..       |  *  * 60  *  * |  0  0   2  2   2  1  0  0  0  0 |  0  0  0  0  2  1  2  1  2  1   2  0  0  0  0 |  0  2 0  1  1  1  1 0
  ...o.3...o.3...o.3...o.       |  *  *  * 60  * |  1  0   0  0   2  0  2  1  1  0 |  2  1  0  0  0  0  0  0  2  2   2  1  2  1  0 |  1  2 0  0  0  2  2 1
  ....o3....o3....o3....o       |  *  *  *  * 30 |  0  0   0  0   0  2  0  0  2  2 |  0  2  0  0  0  0  4  0  0  0   4  0  0  1  1 |  0  4 0  0  2  0  2 0
--------------------------------+----------------+---------------------------------+-----------------------------------------------+----------------------
  o..o.3o..o.3o..o.3o..o.  &#x  |  1  0  0  1  0 | 60  *   *  *   *  *  *  *  *  * |  2  1  0  0  0  0  0  0  0  0   0  0  0  0  0 |  1  2 0  0  0  0  0 0
  ..... ..... .x... .....       |  0  2  0  0  0 |  * 60   *  *   *  *  *  *  *  * |  0  0  1  1  0  1  0  0  0  0   0  0  0  0  0 |  0  0 1  1  1  0  0 0
  .oo..3.oo..3.oo..3.oo..  &#x  |  0  1  1  0  0 |  *  * 120  *   *  *  *  *  *  * |  0  0  0  0  1  1  1  0  0  0   0  0  0  0  0 |  0  1 0  1  1  0  0 0
  ..... ..x.. ..... .....       |  0  0  2  0  0 |  *  *   * 60   *  *  *  *  *  * |  0  0  0  0  1  0  0  1  1  0   0  0  0  0  0 |  0  1 0  1  0  1  0 0
  ..oo.3..oo.3..oo.3..oo.  &#x  |  0  0  1  1  0 |  *  *   *  * 120  *  *  *  *  * |  0  0  0  0  0  0  0  0  1  1   1  0  0  0  0 |  0  1 0  0  0  1  1 0
  ..o.o3..o.o3..o.o3..o.o  &#x  |  0  0  1  0  1 |  *  *   *  *   * 60  *  *  *  * |  0  0  0  0  0  0  2  0  0  0   2  0  0  0  0 |  0  2 0  0  1  0  1 0
  ..... ...x. ..... .....       |  0  0  0  2  0 |  *  *   *  *   *  * 60  *  *  * |  1  0  0  0  0  0  0  0  1  0   0  1  1  0  0 |  1  1 0  0  0  1  0 1
  ..... ..... ...x. .....       |  0  0  0  2  0 |  *  *   *  *   *  *  * 30  *  * |  0  0  0  0  0  0  0  0  0  2   0  0  2  1  0 |  0  0 0  0  0  2  2 1
  ...oo3...oo3...oo3...oo  &#x  |  0  0  0  1  1 |  *  *   *  *   *  *  *  * 60  * |  0  1  0  0  0  0  0  0  0  0   2  0  0  1  0 |  0  2 0  0  0  0  2 0
  ..... ..... ..... ....x       |  0  0  0  0  2 |  *  *   *  *   *  *  *  *  * 30 |  0  1  0  0  0  0  2  0  0  0   0  0  0  0  1 |  0  2 0  0  2  0  0 0
--------------------------------+----------------+---------------------------------+-----------------------------------------------+----------------------
  ..... o..x. ..... .....  &#x  |  1  0  0  2  0 |  2  0   0  0   0  0  1  0  0  0 | 60  *  *  *  *  *  *  *  *  *   *  *  *  *  * |  1  1 0  0  0  0  0 0
  ..... ..... ..... o..fx  &#xt |  1  0  0  2  2 |  2  0   0  0   0  0  0  0  2  1 |  * 30  *  *  *  *  *  *  *  *   *  *  *  *  * |  0  2 0  0  0  0  0 0
  ..... .o...3.x... .....       |  0  3  0  0  0 |  0  3   0  0   0  0  0  0  0  0 |  *  * 20  *  *  *  *  *  *  *   *  *  *  *  * |  0  0 1  1  0  0  0 0
  ..... ..... .x...3.o...       |  0  3  0  0  0 |  0  3   0  0   0  0  0  0  0  0 |  *  *  * 20  *  *  *  *  *  *   *  *  *  *  * |  0  0 1  0  1  0  0 0
  ..... .ox.. ..... .....  &#x  |  0  1  2  0  0 |  0  0   2  1   0  0  0  0  0  0 |  *  *  *  * 60  *  *  *  *  *   *  *  *  *  * |  0  1 0  1  0  0  0 0
  ..... ..... .xo.. .....  &#x  |  0  2  1  0  0 |  0  1   2  0   0  0  0  0  0  0 |  *  *  *  *  * 60  *  *  *  *   *  *  *  *  * |  0  0 0  1  1  0  0 0
  ..... ..... ..... .of.x  &#xt |  0  1  2  0  2 |  0  0   2  0   0  2  0  0  0  1 |  *  *  *  *  *  * 60  *  *  *   *  *  *  *  * |  0  1 0  0  1  0  0 0
  ..... ..x..3..o.. .....       |  0  0  3  0  0 |  0  0   0  3   0  0  0  0  0  0 |  *  *  *  *  *  *  * 20  *  *   *  *  *  *  * |  0  0 0  1  0  1  0 0
  ..... ..xx. ..... .....  &#x  |  0  0  2  2  0 |  0  0   0  1   2  0  1  0  0  0 |  *  *  *  *  *  *  *  * 60  *   *  *  *  *  * |  0  1 0  0  0  1  0 0
  ..... ..... ..ox. .....  &#x  |  0  0  1  2  0 |  0  0   0  0   2  0  0  1  0  0 |  *  *  *  *  *  *  *  *  * 60   *  *  *  *  * |  0  0 0  0  0  1  1 0
  ..ooo3..ooo3..ooo3..ooo  &#x  |  0  0  1  1  1 |  0  0   0  0   1  1  0  0  1  0 |  *  *  *  *  *  *  *  *  *  * 120  *  *  *  * |  0  1 0  0  0  0  1 0
  ...o.3...x. ..... .....       |  0  0  0  3  0 |  0  0   0  0   0  0  3  0  0  0 |  *  *  *  *  *  *  *  *  *  *   * 20  *  *  * |  1  0 0  0  0  0  0 1
  ..... ...x.3...x. .....       |  0  0  0  6  0 |  0  0   0  0   0  0  3  3  0  0 |  *  *  *  *  *  *  *  *  *  *   *  * 20  *  * |  0  0 0  0  0  1  0 1
  ..... ..... ...xo .....  &#x  |  0  0  0  2  1 |  0  0   0  0   0  0  0  1  2  0 |  *  *  *  *  *  *  *  *  *  *   *  *  * 30  * |  0  0 0  0  0  0  2 0
  ..... ..... ....o3....x       |  0  0  0  0  3 |  0  0   0  0   0  0  0  0  0  3 |  *  *  *  *  *  *  *  *  *  *   *  *  *  * 10 |  0  0 0  0  2  0  0 0
--------------------------------+----------------+---------------------------------+-----------------------------------------------+----------------------
  o..o.3o..x. ..... .....  &#x    1  0  0  3  0 |  3  0   0  0   0  0  3  0  0  0 |  3  0  0  0  0  0  0  0  0  0   0  1  0  0  0 | 20  * *  *  *  *  * *
((..... ooxxF ..... ooffx))&#zx   1  1  4  4  4 |  4  0   4  2   4  4  2  0  4  2 |  2  2  0  0  2  0  2  0  2  0   4  0  0  0  0 |  * 30 *  *  *  *  * * (tower: 14532)
  ..... .o...3.x...3.o...         0  6  0  0  0 |  0 12   0  0   0  0  0  0  0  0 |  0  0  4  4  0  0  0  0  0  0   0  0  0  0  0 |  *  * 5  *  *  *  * *
  ..... .ox..3.xo.. .....  &#x    0  3  3  0  0 |  0  3   6  3   0  0  0  0  0  0 |  0  0  1  0  3  3  0  1  0  0   0  0  0  0  0 |  *  * * 20  *  *  * *
  ..... ..... .xo.o3.of.x  &#xt   0  3  3  0  3 |  0  3   6  0   0  3  0  0  0  3 |  0  0  0  1  0  3  3  0  0  0   0  0  0  0  1 |  *  * *  * 20  *  * *
  ..... ..xx.3..ox. .....  &#x    0  0  3  6  0 |  0  0   0  3   6  0  3  3  0  0 |  0  0  0  0  0  0  0  1  3  3   0  0  1  0  0 |  *  * *  *  * 20  * *
  ..... ..... ..oxo .....  &#x    0  0  1  2  1 |  0  0   0  0   2  1  0  1  2  0 |  0  0  0  0  0  0  0  0  0  1   2  0  0  1  0 |  *  * *  *  *  * 60 *
  ...o.3...x.3...x. .....         0  0  0 12  0 |  0  0   0  0   0  0 12  6  0  0 |  0  0  0  0  0  0  0  0  0  0   0  4  4  0  0 |  *  * *  *  *  *  * 5

© 2004-2026
top of page