Acronym tetaco altut Name tetrahedron atop cuboctahedron atop inverted truncated tetrahedron ` ©` Circumradius ... Lace cityin approx. ASCII-art ``` x o o x -- tet x x uo ou x x -- co o x x u u x x o -- inv tut \ +-- gybef ``` ``` o3x o3o -- tet o3x x3x x3o -- co x3o u3o x3x -- inv tut ``` Dihedral angles at {3} between oct and trip:   arccos(-sqrt[27/32]) = 156.716268° at {3} between tet and tricu:   arccos(-7/8) = 151.044976° at {4} between gybef and trip:   arccos(-2/3) = 131.810315° at {3} between gybef and oct:   arccos(-sqrt(3/8)) = 127.761244° at {3} between tet and trip:   arccos(-sqrt(3/8)) = 127.761244° at {4} between gybef and tricu:   arccos(-1/sqrt(6)) = 114.094843° at {3} between oct and tricu:   arccos(-1/4) = 104.477512° at {6} between tricu and tut:   arccos(-1/4) = 104.477512° at {3} between oct and tut:   arccos(1/4) = 75.522488° general polytopal classes: bistratic lace towers Confer related CRFs: srip   coatut   tetaco   general polytopal classes: segmentochora

Incidence matrix according to Dynkin symbol

```oxx3oox3xxo&#xt   → both heights = sqrt(5/8) = 0.790569
(tet || pseudo co || inv tut)

o..3o..3o..     | 4  *  * ♦ 3  3  0  0  0 0  0 | 3  3  6 0 0  0  0  0 0 0 | 1 1 3 3 0 0 0
.o.3.o.3.o.     | * 12  * | 0  1  2  2  2 0  0 | 0  2  2 1 1  2  1  2 0 0 | 0 1 2 1 1 1 0
..o3..o3..o     | *  * 12 | 0  0  0  0  2 1  2 | 0  0  0 0 0  2  2  1 2 1 | 0 0 1 0 2 1 1
----------------+---------+--------------------+--------------------------+--------------
... ... x..     | 2  0  0 | 6  *  *  *  * *  * | 2  0  2 0 0  0  0  0 0 0 | 1 0 1 2 0 0 0
oo.3oo.3oo.&#x  | 1  1  0 | * 12  *  *  * *  * | 0  2  2 0 0  0  0  0 0 0 | 0 1 2 1 0 0 0
.x. ... ...     | 0  2  0 | *  * 12  *  * *  * | 0  1  0 1 0  1  0  0 0 0 | 0 1 1 0 1 0 0
... ... .x.     | 0  2  0 | *  *  * 12  * *  * | 0  0  1 0 1  0  0  1 0 0 | 0 0 1 1 0 1 0
.oo3.oo3.oo&#x  | 0  1  1 | *  *  *  * 24 *  * | 0  0  0 0 0  1  1  1 0 0 | 0 0 1 0 1 1 0
..x ... ...     | 0  0  2 | *  *  *  *  * 6  * | 0  0  0 0 0  2  0  0 2 0 | 0 0 1 0 2 0 1
... ..x ...     | 0  0  2 | *  *  *  *  * * 12 | 0  0  0 0 0  0  1  0 1 1 | 0 0 0 0 1 1 1
----------------+---------+--------------------+--------------------------+--------------
... o..3x..     | 3  0  0 | 3  0  0  0  0 0  0 | 4  *  * * *  *  *  * * * | 1 0 0 1 0 0 0
ox. ... ...&#x  | 1  2  0 | 0  2  1  0  0 0  0 | * 12  * * *  *  *  * * * | 0 1 1 0 0 0 0
... ... xx.&#x  | 2  2  0 | 1  2  0  1  0 0  0 | *  * 12 * *  *  *  * * * | 0 0 1 1 0 0 0
.x.3.o. ...     | 0  3  0 | 0  0  3  0  0 0  0 | *  *  * 4 *  *  *  * * * | 0 1 0 0 1 0 0
... .o.3.x.     | 0  3  0 | 0  0  0  3  0 0  0 | *  *  * * 4  *  *  * * * | 0 0 0 1 0 1 0
.xx ... ...&#x  | 0  2  2 | 0  0  1  0  2 1  0 | *  *  * * * 12  *  * * * | 0 0 1 0 1 0 0
... .ox ...&#x  | 0  1  2 | 0  0  0  0  2 0  1 | *  *  * * *  * 12  * * * | 0 0 0 0 1 1 0
... ... .xo&#x  | 0  2  1 | 0  0  0  1  2 0  0 | *  *  * * *  *  * 12 * * | 0 0 1 0 0 1 0
..x3..x ...     | 0  0  6 | 0  0  0  0  0 3  3 | *  *  * * *  *  *  * 4 * | 0 0 0 0 1 0 1
... ..x3..o     | 0  0  3 | 0  0  0  0  0 0  3 | *  *  * * *  *  *  * * 4 | 0 0 0 0 0 1 1
----------------+---------+--------------------+--------------------------+--------------
o..3o..3x..     ♦ 4  0  0 | 6  0  0  0  0 0  0 | 4  0  0 0 0  0  0  0 0 0 | 1 * * * * * *
ox.3oo. ...&#x  ♦ 1  3  0 | 0  3  3  0  0 0  0 | 0  3  0 1 0  0  0  0 0 0 | * 4 * * * * *
oxx ... xxo&#xt ♦ 2  4  2 | 1  4  2  2  4 1  0 | 0  2  2 0 0  2  0  2 0 0 | * * 6 * * * *
... oo.3xx.&#x  ♦ 3  3  0 | 3  3  0  3  0 0  0 | 1  0  3 0 1  0  0  0 0 0 | * * * 4 * * *
.xx3.ox ...&#x  ♦ 0  3  6 | 0  0  3  0  6 3  3 | 0  0  0 1 0  3  3  0 1 0 | * * * * 4 * *
... .ox3.xo&#x  ♦ 0  3  3 | 0  0  0  3  6 0  3 | 0  0  0 0 1  0  3  3 0 1 | * * * * * 4 *
..x3..x3..o     ♦ 0  0 12 | 0  0  0  0  0 6 12 | 0  0  0 0 0  0  0  0 4 4 | * * * * * * 1
```