Acronym | bicont (old: ducont) |
Name |
bitetracontoctachoron, tetracontoctachoron dual, bi-apiculated icositetrachoron, tetradisphenoidal 288-cell |
© | |
Circumradius | sqrt[1+1/sqrt(2)] = 1.306563 |
Inradius | sqrt[10+7 sqrt(2)]/4 = 1.115221 |
Dual | cont |
Face vector | 48, 336, 576, 288 |
Confer |
|
External links |
This polychoron can be obtained as the convex hull of the 2 ico compound (stoc). Here all the edges of the former remain as long ones, while the short ones come in as interconnections of the 2 vertex set members. Each cell then joins a pair of adjacent vertices of one set to a pair of adjacent vertices of the other set, thus being a disphenoid.
Incidence matrix according to Dynkin symbol
o3m4m3o = ao3oo4oo3oa&#zx → height = 0, where a = circ.rad. = sqrt(w/q) = k/q = 1.306563 o.3o.4o.3o. | 24 * | 8 6 0 | 24 12 | 24 .o3.o4.o3.o | * 24 | 0 6 8 | 12 24 | 24 ---------------+-------+-----------+---------+---- a. .. .. .. | 2 0 | 96 * * | 3 0 | 3 a oo3oo4oo3oo&#x | 1 1 | * 144 * | 4 4 | 8 x .. .. .. .a | 0 2 | * * 96 | 0 3 | 3 a ---------------+-------+-----------+---------+---- ao .. .. ..&#x | 2 1 | 1 2 0 | 288 * | 2 .. .. .. oa&#x | 1 2 | 0 2 1 | * 288 | 2 ---------------+-------+-----------+---------+---- ao .. .. oa&#x | 2 2 | 1 4 1 | 2 2 | 288
or o.3o.4o.3o. & | 48 | 8 6 | 36 | 24 -----------------+----+---------+-----+---- a. .. .. .. & | 2 | 192 * | 3 | 3 a oo3oo4oo3oo&#x | 2 | * 144 | 8 | 8 x -----------------+----+---------+-----+---- ao .. .. ..&#x & | 3 | 1 2 | 576 | 2 -----------------+----+---------+-----+---- ao .. .. oa&#x | 4 | 2 4 | 4 | 288
© 2004-2024 | top of page |