Acronym ...
Name hyperbolic x3o6o3o tesselation
 
 ©
Circumradius 0 i
Dual (selfdual)
Confer
related hyperbolic polytopes:
o6x3o3o3*b   o3x6o3o   o3o3o6x   x3o6x3o  
general polytopal classes:
partial Stott expansions   regular   noble polytopes  
External
links
wikipedia

This regular, non-compact hyperbolic tesselation uses the euclidean tiling hexat in the sense of an infinite horohedron as vertex figure. A trat in the sense of an infinite horohedron too is its single cell type.


Incidence matrix according to Dynkin symbol

x3o6o3o   (N,M,K → ∞)

. . . . | NK   2M |  3M |  M
--------+----+-----+-----+---
x . . . |  2 | NMK |   3 |  3
--------+----+-----+-----+---
x3o . . |  3 |   3 | NMK |  2
--------+----+-----+-----+---
x3o6o .   K |  3K |  2K | NM

o6o3x3o3*b   (N,M,K,L → ∞)

. . . .    | NKL     6M |    6M   3M |   M   2M
-----------+-----+-------+------------+---------
. . x .    |   2 | 3NMKL |     2    1 |   1    2
-----------+-----+-------+------------+---------
. o3x .    |   3 |     3 | 2NMKL    * |   1    1
. . x3o    |   3 |     3 |     * NMKL |   0    2
-----------+-----+-------+------------+---------
o6o3x .       K |    3K |    2K    0 | NML    *
. o3x3o3*b    L |    3L |     L    L |   * 2NMK

x3o3o3o3*a3*c *b3*d   (N,M,K,L,P → ∞)

. . . .             | NKLP      6M |    3M    3M    3M |    M    M    M
--------------------+------+--------+-------------------+---------------
x . . .             |    2 | 3NMKLP |     1     1     1 |    1    1    1
--------------------+------+--------+-------------------+---------------
x3o . .             |    3 |      3 | NMKLP     *     * |    1    1    0
x . o . *a3*c       |    3 |      3 |     * NMKLP     * |    1    0    1
x . . o3*a          |    3 |      3 |     *     * NMKLP |    0    1    1
--------------------+------+--------+-------------------+---------------
x3o3o . *a3*c           K |     3K |     K     K     0 | NMLP    *    *
x3o . o3*a    *b3*d     L |     3L |     L     0     L |    * NMKP    *
x . o3o3*a3*c           P |     3P |     0     P     P |    *    * NMKL

© 2004-2019
top of page