Acronym | ... |
Name | equatorial tetrastratic segment of rectified hexacosachoron |
Circumradius | sqrt[5+2 sqrt(5)] = 3.077684 |
Lace city in approx. ASCII-art |
o5o x5o x5o o5f x5x x5x x5f F=ff=x+f=2x+v, F5o F5o V=F+v=2f=2x+2v, o5F o5F A=F+x=3x+v f5f f5f V5o o5V o5V x5F F5x F5x x5F x5F oA5Ao F5x F5x x5F x5F F5x V5o V5o o5V f5f f5f F5o F5o o5F o5F f5x x5x x5x f5o o5x o5x o5o |
o3x o3F x3V F3F B3x V3F F3V x3B F3F V3x F3o x3o f3x F3f B3o x3B fC3Bo Bo3fC B3x o3B f3F x3f F=ff=x+f=2x+v, V=F+v=2f=2x+2v, x3o Vx3oF o3B A3f F3V # # V3F f3A B3o oF3Vx o3x A=F+x=3x+v, (Bo3fC) (fC3Bo) B=fff=A+v=3x+2v, C=B+x=4x+2v=2F f3x F3f B3o x3B fC3Bo Bo3fC B3x o3B f3F x3f o3x o3F x3V F3F B3x V3F F3V x3B F3F V3x F3o x3o | |
Dihedral angles |
|
Face vector | 312, 1260, 1248, 300 |
Confer |
|
Incidence matrix according to Dynkin symbol
fxoo2ofVx3xxoo5xoof&#zx (V=2f) o...2o...3o...5o... | 120 * * * | 2 1 2 2 0 0 0 0 0 | 1 2 2 2 1 2 2 0 0 0 0 0 0 | 1 1 1 2 2 0 0 .o..2.o..3.o..5.o.. | * 120 * * | 0 0 2 0 1 2 1 2 0 | 0 0 2 1 0 0 2 1 1 2 2 2 0 | 0 1 0 2 1 2 1 ..o.2..o.3..o.5..o. | * * 12 * ♦ 0 0 0 0 0 0 10 0 0 | 0 0 0 0 0 0 0 0 5 10 0 0 0 | 0 0 0 0 0 5 2 ...o2...o3...o5...o | * * * 60 ♦ 0 0 0 4 0 0 0 4 2 | 0 0 0 0 4 2 4 0 0 0 2 2 1 | 0 2 2 2 0 1 0 ------------------------+---------------+----------------------------------+------------------------------------------------+--------------------- .... .... x... .... | 2 0 0 0 | 120 * * * * * * * * | 1 1 1 0 0 1 0 0 0 0 0 0 0 | 1 0 1 1 1 0 0 .... .... .... x... | 2 0 0 0 | * 60 * * * * * * * | 0 2 0 2 0 0 0 0 0 0 0 0 0 | 1 1 0 0 2 0 0 oo..2oo..3oo..5oo..&#x | 1 1 0 0 | * * 240 * * * * * * | 0 0 1 1 0 0 1 0 0 0 0 0 0 | 0 1 0 1 1 0 0 o..o2o..o3o..o5o..o&#x | 1 0 0 1 | * * * 240 * * * * * | 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0 0 .x.. .... .... .... | 0 2 0 0 | * * * * 60 * * * * | 0 0 0 0 0 0 0 0 1 0 2 0 0 | 0 1 0 0 0 2 0 .... .... .x.. .... | 0 2 0 0 | * * * * * 120 * * * | 0 0 1 0 0 0 0 1 0 1 0 1 0 | 0 0 0 1 1 1 1 .oo.2.oo.3.oo.5.oo.&#x | 0 1 1 0 | * * * * * * 120 * * | 0 0 0 0 0 0 0 0 1 2 0 0 0 | 0 0 0 0 0 2 1 .o.o2.o.o3.o.o5.o.o&#x | 0 1 0 1 | * * * * * * * 240 * | 0 0 0 0 0 0 1 0 0 0 1 1 0 | 0 1 0 1 0 1 0 .... ...x .... .... | 0 0 0 2 | * * * * * * * * 60 | 0 0 0 0 2 0 0 0 0 0 0 0 1 | 0 1 2 0 0 0 0 ------------------------+---------------+----------------------------------+------------------------------------------------+--------------------- .... o...3x... .... | 3 0 0 0 | 3 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * * | 1 0 1 0 0 0 0 .... .... x...5x... | 10 0 0 0 | 5 5 0 0 0 0 0 0 0 | * 24 * * * * * * * * * * * | 1 0 0 0 1 0 0 .... .... xx.. ....&#x | 2 2 0 0 | 1 0 2 0 0 1 0 0 0 | * * 120 * * * * * * * * * * | 0 0 0 1 1 0 0 .... .... .... xo..&#x | 2 1 0 0 | 0 1 2 0 0 0 0 0 0 | * * * 120 * * * * * * * * * | 0 1 0 0 1 0 0 .... o..x .... ....&#x | 1 0 0 2 | 0 0 0 2 0 0 0 0 1 | * * * * 120 * * * * * * * * | 0 1 1 0 0 0 0 .... .... x..o ....&#x | 2 0 0 1 | 1 0 0 2 0 0 0 0 0 | * * * * * 120 * * * * * * * | 0 0 1 1 0 0 0 oo.o2oo.o3oo.o5oo.o&#x | 1 1 0 1 | 0 0 1 1 0 0 0 1 0 | * * * * * * 240 * * * * * * | 0 1 0 1 0 0 0 .... .... .x..5.o.. | 0 5 0 0 | 0 0 0 0 0 5 0 0 0 | * * * * * * * 24 * * * * * | 0 0 0 0 1 0 1 .xo. .... .... ....&#x | 0 2 1 0 | 0 0 0 0 1 0 2 0 0 | * * * * * * * * 60 * * * * | 0 0 0 0 0 2 0 .... .... .xo. ....&#x | 0 2 1 0 | 0 0 0 0 0 1 2 0 0 | * * * * * * * * * 120 * * * | 0 0 0 0 0 1 1 .x.o .... .... ....&#x | 0 2 0 1 | 0 0 0 0 1 0 0 2 0 | * * * * * * * * * * 120 * * | 0 1 0 0 0 1 0 .... .... .x.o ....&#x | 0 2 0 1 | 0 0 0 0 0 1 0 2 0 | * * * * * * * * * * * 120 * | 0 0 0 1 0 1 0 .... ...x3...o .... | 0 0 0 3 | 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * 20 | 0 0 2 0 0 0 0 ------------------------+---------------+----------------------------------+------------------------------------------------+--------------------- .... o...3x...5x... ♦ 60 0 0 0 | 60 30 0 0 0 0 0 0 0 | 20 12 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * fx.o of.x .... xo.f&#zx ♦ 4 4 0 4 | 0 2 8 8 2 0 0 8 2 | 0 0 0 4 4 0 8 0 0 0 4 0 0 | * 30 * * * * * .... o..x3x..o ....&#x ♦ 3 0 0 3 | 3 0 0 6 0 0 0 0 3 | 1 0 0 0 3 3 0 0 0 0 0 0 1 | * * 40 * * * * .... .... xx.o ....&#x ♦ 2 2 0 1 | 1 0 2 2 0 1 0 2 0 | 0 0 1 0 0 1 2 0 0 0 0 1 0 | * * * 120 * * * .... .... xx..5xo..&#x ♦ 10 5 0 0 | 5 5 10 0 0 5 0 0 0 | 0 1 5 5 0 0 0 1 0 0 0 0 0 | * * * * 24 * * .xoo .... .xoo ....&#xt ♦ 0 4 1 1 | 0 0 0 0 2 2 4 4 0 | 0 0 0 0 0 0 0 0 2 2 2 2 0 | * * * * * 60 * .... .... .xo.5.oo.&#x ♦ 0 5 1 0 | 0 0 0 0 0 5 5 0 0 | 0 0 0 0 0 0 0 1 0 5 0 0 0 | * * * * * * 24
© 2004-2024 | top of page |