Acronym ...
Name Shephard's 4-generalised tesseract,
complex polychoron x4-4-o2-3-o2-3-o2,
γ44
 
 ©
Vertex figure tet
Coordinates (in, im, ik, il)   for any 1≤n,m,k,l≤4
Dual x2-3-o2-3-o2-4-o4
Face vector 256, 256, 96, 16
Confer
more general:
xp-4-o2-3-o2-3-o2  
real space embedding:
octo
general polytopal classes:
complex polytopes  
External
links
wikipedia  

The (complex) faces are x4-4-o2, the (complex) cells are x4-4-o2-3-o2, and the vertex figure here is just x2-3-o2-3-o2, i.e. nothing but the real space tet.

The below various incidence representations are direct, next dimensional consequences from what was explained already at xp-4-o2 = xp   xp. I.e. the according cartesian or prism product applies for complex polytopes alike.


Incidence matrix according to Dynkin symbol

x4-4-o2-3-o2-3-o2

.    .    .    .  | 256    4 |  6 |  4
-----------------+-----+-----+----+---
x4   .    .    .  |   4 | 256 |  3 |  3
-----------------+-----+-----+----+---
x4-4-o2   .    .    16 |   8 | 96 |  2
-----------------+-----+-----+----+---
x4-4-o2-3-o2   .    64 |  48 | 12 | 16

x4   x4-4-o2-3-o2

.    .    .    .  | 256   1   3 |  3  3 |  3 1
-----------------+-----+--------+-------+-----
x4   .    .    .  |   4 | 64   * |  3  0 |  3 0
.    x4   .    .  |   4 |  * 192 |  1  2 |  2 1
-----------------+-----+--------+-------+-----
x4   x4   .    .    16 |  4   4 | 48  * |  2 0
.    x4-4-o2   .    16 |  0   8 |  * 48 |  1 1
-----------------+-----+--------+-------+-----
x4   x4-4-o2   .    64 | 16  32 |  8  4 | 12 *
.    x4-4-o2-3-o2   64 |  0  48 |  0 12 |  * 4

x4-4-o2   x4-4-o2

.    .    .    .  | 256    2   2 |  1  4  1 | 2 2
-----------------+-----+---------+----------+----
x4   .    .    .  |   4 | 128   * |  1  2  0 | 2 1
.    .    x4   .  |   4 |   * 128 |  0  2  1 | 1 2
-----------------+-----+---------+----------+----
x4-4-o2   .    .    16 |   8   0 | 16  *  * | 2 0
x4   .    x4   .    16 |   4   4 |  * 64  * | 1 1
.    .    x4-4-o2   16 |   0   8 |  *  * 16 | 0 2
-----------------+-----+---------+----------+----
x4-4-o2   x4   .    64 |  32  16 |  4  8  0 | 8 *
x4   .    x4-4-o2   64 |  16  32 |  0  8  4 | * 8

x4   x4   x4-4-o2

.    .    .    .  | 256   1  1   2 |  1  2  2  1 | 2 1 1
-----------------+-----+-----------+-------------+------
x4   .    .    .  |   4 | 64  *   * |  1  2  0  0 | 2 1 0
.    x4   .    .  |   4 |  * 64   * |  1  0  2  0 | 2 0 1
.    .    x4   .  |   4 |  *  * 128 |  0  1  1  1 | 1 1 1
-----------------+-----+-----------+-------------+------
x4   x4   .    .    16 |  4  4   0 | 16  *  *  * | 2 0 0
x4   .    x4   .    16 |  4  0   4 |  * 32  *  * | 1 1 0
.    x4   x4   .    16 |  0  4   4 |  *  * 32  * | 1 0 1
.    .    x4-4-o2   16 |  0  0   8 |  *  *  * 16 | 0 1 1
-----------------+-----+-----------+-------------+------
x4   x4   x4   .    64 | 16 16  16 |  4  4  4  0 | 8 * *
x4   .    x4-4-o2   64 | 16  0  32 |  0  8  0  4 | * 4 *
.    x4   x4-4-o2   64 |  0 16  32 |  0  0  8  4 | * * 4

x4   x4   x4   x4 

.    .    .    .  | 256   1  1  1  1 |  1  1  1  1  1  1 | 1 1 1 1
-----------------+-----+-------------+-------------------+--------
x4   .    .    .  |   4 | 64  *  *  * |  1  1  1  0  0  0 | 1 1 1 0
.    x4   .    .  |   4 |  * 64  *  * |  1  0  0  1  1  0 | 1 1 0 1
.    .    x4   .  |   4 |  *  * 64  * |  0  1  0  1  0  1 | 1 0 1 1
.    .    .    x4 |   4 |  *  *  * 64 |  0  0  1  0  1  1 | 0 1 1 1
-----------------+-----+-------------+-------------------+--------
x4   x4   .    .    16 |  4  4  0  0 | 16  *  *  *  *  * | 1 1 0 0
x4   .    x4   .    16 |  4  0  4  0 |  * 16  *  *  *  * | 1 0 1 0
x4   .    .    x4   16 |  4  0  0  4 |  *  * 16  *  *  * | 0 1 1 0
.    x4   x4   .    16 |  0  4  4  0 |  *  *  * 16  *  * | 1 0 0 1
.    x4   .    x4   16 |  0  4  0  4 |  *  *  *  * 16  * | 0 1 0 1
.    .    x4   x4   16 |  0  0  4  4 |  *  *  *  *  * 16 | 0 0 1 1
-----------------+-----+-------------+-------------------+--------
x4   x4   x4   .    64 | 16 16 16  0 |  4  4  0  4  0  0 | 4 * * *
x4   x4   .    x4   64 | 16 16  0 16 |  4  0  4  0  4  0 | * 4 * *
x4   .    x4   x4   64 | 16  0 16 16 |  0  4  4  0  0  4 | * * 4 *
.    x4   x4   x4   64 |  0 16 16 16 |  0  0  0  4  4  4 | * * * 4

© 2004-2024
top of page