| Acronym | gad | |||||||||||||||||||||||||||||||
| TOCID symbol | E | |||||||||||||||||||||||||||||||
| Name |
great dodecahedron, faceted icosahedron, vertex figure of fix | |||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||
| VRML |
| |||||||||||||||||||||||||||||||
| Circumradius | sqrt[(5+sqrt(5))/8] = 0.951057 | |||||||||||||||||||||||||||||||
| Inradius | sqrt[(5+sqrt(5))/40] = 0.425325 | |||||||||||||||||||||||||||||||
| Density | 3 | |||||||||||||||||||||||||||||||
| Vertex figure | [55]/2 | |||||||||||||||||||||||||||||||
| Vertex layers |
| |||||||||||||||||||||||||||||||
|
Lace city in approx. ASCII-art |
o o f x x f o o | |||||||||||||||||||||||||||||||
| Coordinates |
(τ/2, 1/2, 0) & even permutations, all changes of sign where τ = (1+sqrt(5))/2 | |||||||||||||||||||||||||||||||
| General of army | ike | |||||||||||||||||||||||||||||||
| Colonel of regiment | ike | |||||||||||||||||||||||||||||||
| Dual | sissid | |||||||||||||||||||||||||||||||
| Dihedral angles |
| |||||||||||||||||||||||||||||||
| Face vector | 12, 30, 12 | |||||||||||||||||||||||||||||||
| Confer |
| |||||||||||||||||||||||||||||||
|
External links |
| |||||||||||||||||||||||||||||||
As abstract polytope gad is isomorphic to sissid, thereby replacing facial pentagons by pentagrams and conversely vertex figure pentagrams by corresponding pentagons. – As such gad is a lieutenant. Both gad and sissid can be seen as different realizations of the same self-dual regular abstract polyhedron {5,5}6 (where the index just denotes the size of the corresponding Petrie polygon) which in turn equates to the representation {5,5|3} = x5o5o | x3o (where that suffix then denotes the size of the corresponding hole). In fact, the latter occurs here as face of the circumscribing ike.
This polyhedron is an edge-faceting of the icosahedron (ike).
Incidence matrix according to Dynkin symbol
o5/2o5x . . . | 12 | 5 | 5 --------+----+----+--- . . x | 2 | 30 | 2 --------+----+----+--- . o5x | 5 | 5 | 12 snubbed forms: o5/2o5β
o5/3o5x . . . | 12 | 5 | 5 --------+----+----+--- . . x | 2 | 30 | 2 --------+----+----+--- . o5x | 5 | 5 | 12
x5/4o5/2o . . . | 12 | 5 | 5 ----------+----+----+--- x . . | 2 | 30 | 2 ----------+----+----+--- x5/4o . | 5 | 5 | 12
x5/4o5/3o . . . | 12 | 5 | 5 ----------+----+----+--- x . . | 2 | 30 | 2 ----------+----+----+--- x5/4o . | 5 | 5 | 12
© 2004-2025 | top of page |