Acronym | ... |
TOCID symbol | OC* |
Name | oct+6{4} (?) |
Circumradius | 1/sqrt(2) = 0.707107 |
Vertex figure | [(3/2,4)4] = [(3,4)4]/3 |
Snub derivation |
|
Coordinates | (1/sqrt(2), 0, 0) & all permutations, all changes of sign |
General of army | oct |
Colonel of regiment | oct |
Confer | 2oct+6{4} 2oct+12{4} |
Looks like a compound of an octahedra (oct) plus 3 diametral pairs of squares, and indeed edges and {4} coincide by pairs, but vertices are identified (type A). Alternatively it can be seen as a pair of tetrahemihexahedra (thah), mutually in inverted positioning, with vertices pairwise identified.
Incidence matrix according to Dynkin symbol
x3/2o4o4*a (type A) . . . | 6 | 8 | 4 4 -----------+---+----+---- x . . | 2 | 24 | 1 1 -----------+---+----+---- x3/2o . | 3 | 3 | 8 * x . o4*a | 4 | 4 | * 6
o4/3x3o4*a (type A) . . . | 6 | 8 | 4 4 --------+---+----+---- . x . | 2 | 24 | 1 1 --------+---+----+---- o4/3x . | 4 | 4 | 6 * . x3o | 3 | 3 | * 8
o4/3o3x4*a (type A) . . . | 6 | 8 | 4 4 -----------+---+----+---- . . x | 2 | 24 | 1 1 -----------+---+----+---- . o3x | 3 | 3 | 8 * o . x4*a | 4 | 4 | * 6
x4/3o4/3o3/2*a (type A) . . . | 6 | 8 | 4 4 ---------------+---+----+---- x . . | 2 | 24 | 1 1 ---------------+---+----+---- x4/3o . | 4 | 4 | 6 * x . o3/2*a | 3 | 3 | * 8
β3o4o (type A) both( . . . ) | 6 | 8 | 4 4 --------------+---+----+---- sefa( β3o . ) | 2 | 24 | 1 1 --------------+---+----+---- β3o . ♦ 3 | 3 | 8 * sefa( β3o4o ) | 4 | 4 | * 6 starting figure: x3o4o
β3/2o4o (type A) both( . . . ) | 6 | 8 | 4 4 ----------------+---+----+---- sefa( β3/2o . ) | 2 | 24 | 1 1 ----------------+---+----+---- β3/2o . ♦ 3 | 3 | 8 * sefa( β3/2o4o ) | 4 | 4 | * 6 starting figure: x3/2o4o
o4/3o3β (type A) both( . . . ) | 6 | 8 | 4 4 ----------------+---+----+---- sefa( . o3β ) | 2 | 24 | 1 1 ----------------+---+----+---- . o3β ♦ 3 | 3 | 8 * sefa( o4/3o3β ) | 4 | 4 | * 6 starting figure: o4/3o3x
o4/3o3/2β (type A) both( . . . ) | 6 | 8 | 4 4 ------------------+---+----+---- sefa( . o3/2β ) | 2 | 24 | 1 1 ------------------+---+----+---- . o3/2β ♦ 3 | 3 | 8 * sefa( o4/3o3/2β ) | 4 | 4 | * 6 starting figure: o4/3o3/2x
o3β3o (type A) both( . . . ) | 6 | 4 4 | 2 2 4 --------------+---+-------+------ sefa( o3β . ) | 2 | 12 * | 1 0 1 sefa( . β3o ) | 2 | * 12 | 0 1 1 --------------+---+-------+------ o3β . ♦ 3 | 3 0 | 4 * * . β3o ♦ 3 | 0 3 | * 4 * sefa( o3β3o ) | 4 | 2 2 | * * 6 starting figure: o3x3o
o3/2β3o (type A) both( . . . ) | 6 | 4 4 | 2 2 4 ----------------+---+-------+------ sefa( o3/2β . ) | 2 | 12 * | 1 0 1 sefa( . β3o ) | 2 | * 12 | 0 1 1 ----------------+---+-------+------ o3/2β . ♦ 3 | 3 0 | 4 * * . β3o ♦ 3 | 0 3 | * 4 * sefa( o3/2β3o ) | 4 | 2 2 | * * 6 starting figure: o3/2x3o
o3/2β3/2o (type A) both( . . . ) | 6 | 4 4 | 2 2 4 ------------------+---+-------+------ sefa( o3/2β . ) | 2 | 12 * | 1 0 1 sefa( . β3/2o ) | 2 | * 12 | 0 1 1 ------------------+---+-------+------ o3/2β . ♦ 3 | 3 0 | 4 * * . β3/2o ♦ 3 | 0 3 | * 4 * sefa( o3/2β3/2o ) | 4 | 2 2 | * * 6 starting figure: o3/2x3/2o
© 2004-2024 | top of page |