| Acronym | ... | 
| TOCID symbol | OC* | 
| Name | oct+6{4} (?) | 
| Circumradius | 1/sqrt(2) = 0.707107 | 
| Vertex figure | [(3/2,4)4] = [(3,4)4]/3 | 
| 
Snub derivation / VRML  | 
  | 
| Coordinates | (1/sqrt(2), 0, 0) & all permutations, all changes of sign | 
| General of army | oct | 
| Colonel of regiment | oct | 
| Confer | 2oct+6{4} 2oct+12{4} 3oct+6{4} | 
Looks like a compound of an octahedra (oct) plus 3 diametral pairs of squares, and indeed edges and {4} coincide by pairs, but vertices are identified (type A). Alternatively it can be seen as a pair of tetrahemihexahedra (thah), mutually in inverted positioning, with vertices pairwise identified.
Incidence matrix according to Dynkin symbol
x3/2o4o4*a (type A) . . . | 6 | 8 | 4 4 -----------+---+----+---- x . . | 2 | 24 | 1 1 -----------+---+----+---- x3/2o . | 3 | 3 | 8 * x . o4*a | 4 | 4 | * 6
o4/3x3o4*a (type A) . . . | 6 | 8 | 4 4 --------+---+----+---- . x . | 2 | 24 | 1 1 --------+---+----+---- o4/3x . | 4 | 4 | 6 * . x3o | 3 | 3 | * 8
o4/3o3x4*a (type A) . . . | 6 | 8 | 4 4 -----------+---+----+---- . . x | 2 | 24 | 1 1 -----------+---+----+---- . o3x | 3 | 3 | 8 * o . x4*a | 4 | 4 | * 6
x4/3o4/3o3/2*a (type A) . . . | 6 | 8 | 4 4 ---------------+---+----+---- x . . | 2 | 24 | 1 1 ---------------+---+----+---- x4/3o . | 4 | 4 | 6 * x . o3/2*a | 3 | 3 | * 8
β3o4o (type A)
both( . . . ) | 6 |  8 | 4 4
--------------+---+----+----
sefa( β3o . ) | 2 | 24 | 1 1
--------------+---+----+----
      β3o .   ♦ 3 |  3 | 8 *
sefa( β3o4o ) | 4 |  4 | * 6
starting figure: x3o4o
β3/2o4o (type A)
both( .   . . ) | 6 |  8 | 4 4
----------------+---+----+----
sefa( β3/2o . ) | 2 | 24 | 1 1
----------------+---+----+----
      β3/2o .   ♦ 3 |  3 | 8 *
sefa( β3/2o4o ) | 4 |  4 | * 6
starting figure: x3/2o4o
o4/3o3β (type A)
both( .   . . ) | 6 |  8 | 4 4
----------------+---+----+----
sefa( .   o3β ) | 2 | 24 | 1 1
----------------+---+----+----
      .   o3β   ♦ 3 |  3 | 8 *
sefa( o4/3o3β ) | 4 |  4 | * 6
starting figure: o4/3o3x
o4/3o3/2β (type A)
both( .   .   . ) | 6 |  8 | 4 4
------------------+---+----+----
sefa( .   o3/2β ) | 2 | 24 | 1 1
------------------+---+----+----
      .   o3/2β   ♦ 3 |  3 | 8 *
sefa( o4/3o3/2β ) | 4 |  4 | * 6
starting figure: o4/3o3/2x
o3β3o (type A)
both( . . . ) | 6 |  4  4 | 2 2 4
--------------+---+-------+------
sefa( o3β . ) | 2 | 12  * | 1 0 1
sefa( . β3o ) | 2 |  * 12 | 0 1 1
--------------+---+-------+------
      o3β .   ♦ 3 |  3  0 | 4 * *
      . β3o   ♦ 3 |  0  3 | * 4 *
sefa( o3β3o ) | 4 |  2  2 | * * 6
starting figure: o3x3o
o3/2β3o (type A)
both( .   . . ) | 6 |  4  4 | 2 2 4
----------------+---+-------+------
sefa( o3/2β . ) | 2 | 12  * | 1 0 1
sefa( .   β3o ) | 2 |  * 12 | 0 1 1
----------------+---+-------+------
      o3/2β .   ♦ 3 |  3  0 | 4 * *
      .   β3o   ♦ 3 |  0  3 | * 4 *
sefa( o3/2β3o ) | 4 |  2  2 | * * 6
starting figure: o3/2x3o
o3/2β3/2o (type A)
both( .   .   . ) | 6 |  4  4 | 2 2 4
------------------+---+-------+------
sefa( o3/2β   . ) | 2 | 12  * | 1 0 1
sefa( .   β3/2o ) | 2 |  * 12 | 0 1 1
------------------+---+-------+------
      o3/2β   .   ♦ 3 |  3  0 | 4 * *
      .   β3/2o   ♦ 3 |  0  3 | * 4 *
sefa( o3/2β3/2o ) | 4 |  2  2 | * * 6
starting figure: o3/2x3/2o
© 2004-2025  | top of page |