Acronym gaghi, gapD
Name great grand hecatonicosachoron,
greatened aggrandized polydodecahedron
Cross sections
 ©
Circumradius 1
Inradius (sqrt(5)-1)/4 = 0.309017
Density 76
Coordinates
  • (1, 0, 0, 0)                                         & all permutations, all changes of sign
    (vertex inscribed q-hex)
  • (1/2, 1/2, 1/2, 1/2)                             & all permutations, all changes of sign
    (vertex inscribed tes)
  • ((1+sqrt(5))/4, (sqrt(5)-1)/4, 1/4, 0)   & all even permutations, all changes of sign
    (vertex inscribed v-sadi)
General of army ex
Colonel of regiment sishi
Dual gofix
Dihedral angles
  • at {5} between gad and gad:   72°
Face vector 120, 1200, 720, 120
Confer
Grünbaumian relatives:
gaghi+didhi   gaghi+idhi   gaghi+paphacki+sridaphi   gaghi+sridixhi   2gaghi   2gaghi+2paphacki   sishi+gaghi+idhi  
decompositions:
pt || gaghi  
general polytopal classes:
Wythoffian polychora   regular   noble polytopes  
External
links
hedrondude   wikipedia   polytopewiki   WikiChoron   nan ma

As abstract polytope gaghi is isomorphic to sishi, thereby replacing pentagons by pentagrams, resp. gad by sissid, resp. replacing gissid vertex figures by doe ones. – As such gaghi is a lieutenant.

If considered with according densities, then gaghi can be thought of as the external blend of 120 gadpies. This decomposition is described as the degenerate segmentoteron ox5oo5/2oo3oo&#x.


Incidence matrix according to Dynkin symbol

x5o5/2o3o

. .   . . | 120    20 |  30 |  12
----------+-----+------+-----+----
x .   . . |   2 | 1200 |   3 |   3
----------+-----+------+-----+----
x5o   . . |   5 |    5 | 720 |   2
----------+-----+------+-----+----
x5o5/2o .   12 |   30 |  12 | 120

x5o5/2o3/2o

. .   .   . | 120    20 |  30 |  12
------------+-----+------+-----+----
x .   .   . |   2 | 1200 |   3 |   3
------------+-----+------+-----+----
x5o   .   . |   5 |    5 | 720 |   2
------------+-----+------+-----+----
x5o5/2o   .   12 |   30 |  12 | 120

x5o5/3o3o

. .   . . | 120    20 |  30 |  12
----------+-----+------+-----+----
x .   . . |   2 | 1200 |   3 |   3
----------+-----+------+-----+----
x5o   . . |   5 |    5 | 720 |   2
----------+-----+------+-----+----
x5o5/3o .   12 |   30 |  12 | 120

x5o5/3o3/2o

. .   .   . | 120    20 |  30 |  12
------------+-----+------+-----+----
x .   .   . |   2 | 1200 |   3 |   3
------------+-----+------+-----+----
x5o   .   . |   5 |    5 | 720 |   2
------------+-----+------+-----+----
x5o5/3o   .   12 |   30 |  12 | 120

x5/4o5/2o3o

.   .   . . | 120    20 |  30 |  12
------------+-----+------+-----+----
x   .   . . |   2 | 1200 |   3 |   3
------------+-----+------+-----+----
x5/4o   . . |   5 |    5 | 720 |   2
------------+-----+------+-----+----
x5/4o5/2o .   12 |   30 |  12 | 120

x5/4o5/2o3/2o

.   .   .   . | 120    20 |  30 |  12
--------------+-----+------+-----+----
x   .   .   . |   2 | 1200 |   3 |   3
--------------+-----+------+-----+----
x5/4o   .   . |   5 |    5 | 720 |   2
--------------+-----+------+-----+----
x5/4o5/2o   .   12 |   30 |  12 | 120

x5/4o5/3o3o

.   .   . . | 120    20 |  30 |  12
------------+-----+------+-----+----
x   .   . . |   2 | 1200 |   3 |   3
------------+-----+------+-----+----
x5/4o   . . |   5 |    5 | 720 |   2
------------+-----+------+-----+----
x5/4o5/3o .   12 |   30 |  12 | 120

x5/4o5/3o3/2o

.   .   .   . | 120    20 |  30 |  12
--------------+-----+------+-----+----
x   .   .   . |   2 | 1200 |   3 |   3
--------------+-----+------+-----+----
x5/4o   .   . |   5 |    5 | 720 |   2
--------------+-----+------+-----+----
x5/4o5/3o   .   12 |   30 |  12 | 120

© 2004-2024
top of page