Acronym | bark | ||
Name |
birectified diacosipentacontahexazetton, equatorial cross-section of rek-first brav | ||
Circumradius | sqrt(3/2) = 1.224745 | ||
Inradius wrt. broc | 3/4 = 0.75 | ||
Inradius wrt. rez | 1/sqrt(2) = 0.707107 | ||
Lace city in approx. ASCII-art |
| ||
Coordinates | (1/sqrt(2), 1/sqrt(2), 1/sqrt(2), 0, 0, 0, 0, 0) & all permutations, all changes of sign | ||
Volume | 4541/2520 = 1.801984 | ||
Surface | (4764+968 sqrt(2))/315 = 19.469710 | ||
Dihedral angles
(at margins) | |||
Face vector | 448, 6720, 22400, 36960, 34048, 16128, 3184, 272 | ||
Confer |
| ||
External links |
Incidence matrix according to Dynkin symbol
o3o3x3o3o3o3o4o . . . . . . . . | 448 ♦ 30 | 30 120 | 10 120 240 | 40 240 240 | 80 240 96 | 80 96 3 | 32 3 ----------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- . . x . . . . . | 2 | 6720 | 3 8 | 1 16 24 | 8 48 32 | 24 64 16 | 32 32 1 | 16 2 ----------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- . o3x . . . . . | 3 | 3 | 4480 * | 1 8 0 | 8 24 0 | 24 32 0 | 32 16 0 | 16 1 . . x3o . . . . | 3 | 3 | * 17920 | 0 2 6 | 1 12 12 | 6 24 8 | 12 16 1 | 8 2 ----------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x . . . . . ♦ 4 | 6 | 4 0 | 1120 * * ♦ 8 0 0 | 24 0 0 | 32 0 0 | 16 0 . o3x3o . . . . ♦ 6 | 12 | 4 4 | * 8960 * | 1 6 0 | 6 12 0 | 12 8 0 | 8 1 . . x3o3o . . . ♦ 4 | 6 | 0 4 | * * 26880 | 0 2 4 | 1 8 4 | 4 8 1 | 4 2 ----------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x3o . . . . ♦ 10 | 30 | 20 10 | 5 5 0 | 1792 * * ♦ 6 0 0 | 12 0 0 | 8 0 . o3x3o3o . . . ♦ 10 | 30 | 10 20 | 0 5 5 | * 10752 * | 1 4 0 | 4 4 0 | 4 1 . . x3o3o3o . . ♦ 5 | 10 | 0 10 | 0 0 5 | * * 21504 | 0 2 2 | 1 4 1 | 2 2 ----------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x3o3o . . . ♦ 20 | 90 | 60 60 | 15 30 15 | 6 6 0 | 1792 * * | 4 0 0 | 4 0 . o3x3o3o3o . . ♦ 15 | 60 | 20 60 | 0 15 30 | 0 6 6 | * 7168 * | 1 2 0 | 2 1 . . x3o3o3o3o . ♦ 6 | 15 | 0 20 | 0 0 15 | 0 0 6 | * * 7168 | 0 2 1 | 1 2 ----------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x3o3o3o . . ♦ 35 | 210 | 140 210 | 35 105 105 | 21 42 21 | 7 7 0 | 1024 * * | 2 0 . o3x3o3o3o3o . ♦ 21 | 105 | 35 140 | 0 35 105 | 0 21 42 | 0 7 7 | * 2048 * | 1 1 . . x3o3o3o3o4o ♦ 12 | 60 | 0 160 | 0 0 240 | 0 0 192 | 0 0 64 | * * 112 | 0 2 ----------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x3o3o3o3o . ♦ 56 | 420 | 280 560 | 70 280 420 | 56 168 168 | 28 56 28 | 8 8 0 | 256 * . o3x3o3o3o3o4o ♦ 84 | 840 | 280 2240 | 0 560 3360 | 0 672 2688 | 0 448 896 | 0 128 14 | * 16
o3o3x3o3o3o3o4/3o . . . . . . . . | 448 ♦ 30 | 30 120 | 10 120 240 | 40 240 240 | 80 240 96 | 80 96 3 | 32 3 ------------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- . . x . . . . . | 2 | 6720 | 3 8 | 1 16 24 | 8 48 32 | 24 64 16 | 32 32 1 | 16 2 ------------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- . o3x . . . . . | 3 | 3 | 4480 * | 1 8 0 | 8 24 0 | 24 32 0 | 32 16 0 | 16 1 . . x3o . . . . | 3 | 3 | * 17920 | 0 2 6 | 1 12 12 | 6 24 8 | 12 16 1 | 8 2 ------------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x . . . . . ♦ 4 | 6 | 4 0 | 1120 * * ♦ 8 0 0 | 24 0 0 | 32 0 0 | 16 0 . o3x3o . . . . ♦ 6 | 12 | 4 4 | * 8960 * | 1 6 0 | 6 12 0 | 12 8 0 | 8 1 . . x3o3o . . . ♦ 4 | 6 | 0 4 | * * 26880 | 0 2 4 | 1 8 4 | 4 8 1 | 4 2 ------------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x3o . . . . ♦ 10 | 30 | 20 10 | 5 5 0 | 1792 * * ♦ 6 0 0 | 12 0 0 | 8 0 . o3x3o3o . . . ♦ 10 | 30 | 10 20 | 0 5 5 | * 10752 * | 1 4 0 | 4 4 0 | 4 1 . . x3o3o3o . . ♦ 5 | 10 | 0 10 | 0 0 5 | * * 21504 | 0 2 2 | 1 4 1 | 2 2 ------------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x3o3o . . . ♦ 20 | 90 | 60 60 | 15 30 15 | 6 6 0 | 1792 * * | 4 0 0 | 4 0 . o3x3o3o3o . . ♦ 15 | 60 | 20 60 | 0 15 30 | 0 6 6 | * 7168 * | 1 2 0 | 2 1 . . x3o3o3o3o . ♦ 6 | 15 | 0 20 | 0 0 15 | 0 0 6 | * * 7168 | 0 2 1 | 1 2 ------------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x3o3o3o . . ♦ 35 | 210 | 140 210 | 35 105 105 | 21 42 21 | 7 7 0 | 1024 * * | 2 0 . o3x3o3o3o3o . ♦ 21 | 105 | 35 140 | 0 35 105 | 0 21 42 | 0 7 7 | * 2048 * | 1 1 . . x3o3o3o3o4/3o ♦ 12 | 60 | 0 160 | 0 0 240 | 0 0 192 | 0 0 64 | * * 112 | 0 2 ------------------+-----+------+------------+-----------------+------------------+----------------+---------------+------- o3o3x3o3o3o3o . ♦ 56 | 420 | 280 560 | 70 280 420 | 56 168 168 | 28 56 28 | 8 8 0 | 256 * . o3x3o3o3o3o4/3o ♦ 84 | 840 | 280 2240 | 0 560 3360 | 0 672 2688 | 0 448 896 | 0 128 14 | * 16
o3o3o *b3o3o3x3o3o . . . . . . . . | 448 ♦ 30 | 120 30 | 240 120 10 | 240 240 40 | 48 48 240 80 | 3 48 48 80 | 3 16 16 -------------------+-----+------+------------+-----------------+------------------+---------------------+--------------------+----------- . . . . . x . . | 2 | 6720 | 8 3 | 24 16 1 | 32 48 8 | 8 8 64 24 | 1 16 16 32 | 2 8 8 -------------------+-----+------+------------+-----------------+------------------+---------------------+--------------------+----------- . . . . o3x . . | 3 | 3 | 17920 * | 6 2 0 | 12 12 1 | 4 4 24 6 | 1 8 8 12 | 2 4 4 . . . . . x3o . | 3 | 3 | * 4480 | 0 8 1 | 0 24 8 | 0 0 32 24 | 0 8 8 32 | 1 8 8 -------------------+-----+------+------------+-----------------+------------------+---------------------+--------------------+----------- . . . o3o3x . . ♦ 4 | 6 | 4 0 | 26880 * * | 4 2 0 | 2 2 8 1 | 1 4 4 4 | 2 2 2 . . . . o3x3o . ♦ 6 | 12 | 4 4 | * 8960 * | 0 6 1 | 0 0 12 6 | 0 4 4 12 | 1 4 4 . . . . . x3o3o ♦ 4 | 6 | 0 4 | * * 1120 ♦ 0 0 8 | 0 0 0 24 | 0 0 0 32 | 0 8 8 -------------------+-----+------+------------+-----------------+------------------+---------------------+--------------------+----------- . o . *b3o3o3x . . ♦ 5 | 10 | 10 0 | 5 0 0 | 21504 * * | 1 1 2 0 | 1 2 2 1 | 2 1 1 . . . o3o3x3o . ♦ 10 | 30 | 20 10 | 5 5 0 | * 10752 * | 0 0 4 1 | 0 2 2 4 | 1 2 2 . . . . o3x3o3o ♦ 10 | 30 | 10 20 | 0 5 5 | * * 1792 ♦ 0 0 0 6 | 0 0 0 12 | 0 4 4 -------------------+-----+------+------------+-----------------+------------------+---------------------+--------------------+----------- o3o . *b3o3o3x . . ♦ 6 | 15 | 20 0 | 15 0 0 | 6 0 0 | 3584 * * * | 1 2 0 0 | 2 1 0 . o3o *b3o3o3x . . ♦ 6 | 15 | 20 0 | 15 0 0 | 6 0 0 | * 3584 * * | 1 0 2 0 | 2 0 1 . o . *b3o3o3x3o . ♦ 15 | 60 | 60 20 | 30 15 0 | 6 6 0 | * * 7168 * | 0 1 1 1 | 1 1 1 . . . o3o3x3o3o ♦ 20 | 90 | 60 60 | 15 30 15 | 0 6 6 | * * * 1792 | 0 0 0 4 | 0 2 2 -------------------+-----+------+------------+-----------------+------------------+---------------------+--------------------+----------- o3o3o *b3o3o3x . . ♦ 12 | 60 | 160 0 | 240 0 0 | 192 0 0 | 32 32 0 0 | 112 * * * | 2 0 0 o3o . *b3o3o3x3o . ♦ 21 | 105 | 140 35 | 105 35 0 | 42 21 0 | 7 0 7 0 | * 1024 * * | 1 1 0 . o3o *b3o3o3x3o . ♦ 21 | 105 | 140 35 | 105 35 0 | 42 21 0 | 0 7 7 0 | * * 1024 * | 1 0 1 . o . *b3o3o3x3o3o ♦ 35 | 210 | 210 140 | 105 105 35 | 21 42 21 | 0 0 7 7 | * * * 1024 | 0 1 1 -------------------+-----+------+------------+-----------------+------------------+---------------------+--------------------+----------- o3o3o *b3o3o3x3o . ♦ 84 | 840 | 2240 280 | 3360 560 0 | 2688 672 0 | 448 448 448 0 | 14 64 64 0 | 16 * * o3o . *b3o3o3x3o3o ♦ 56 | 420 | 560 280 | 420 280 70 | 168 168 56 | 28 0 56 28 | 0 8 0 8 | * 128 * . o3o *b3o3o3x3o3o ♦ 56 | 420 | 560 280 | 420 280 70 | 168 168 56 | 0 28 56 28 | 0 0 8 8 | * * 128
ooo3xox3oxo3ooo3ooo3ooo4ooo&#xt → both heights = 1/sqrt(2) = 0.707107 (rez || pseudo barz || rez) ...
qo oo3xo3ox3oo3oo3oo4oo&#zx → height = 0 (tegum sum of q-height rez prism and equatorial barz) ...
© 2004-2024 | top of page |