Acronym ... Name ike atop id atop srid atop ti Dihedral angles (at margins) at {3} between oct and oct:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between oct and squippy:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between ike and oct:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between gyepip and oct:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {3} between gyepip and squippy:   arccos(-sqrt[7+3 sqrt(5)]/4) = 157.761244° at {4} between squippy and trip:   arccos[-sqrt(5/6)] = 155.905157° at {4} between tricu and trip:   arccos[-sqrt(5/6)] = 155.905157° at {3} between pap and trip:   150° at {5} between gyepip and pap:   144° at {3} between pap and tricu:   arccos[-sqrt(5/8)] = 142.238756° at {3} between oct and tricu:   arccos[-(3 sqrt(5)-1)/8] = 135.522488° at {6} between ti and tricu:   arccos[(3-sqrt(5))/sqrt(32)] = 82.238756° at {5} between pap and ti:   72° Confer related CRFs: .oxx3.xox5.oxo&#xt   blend-components: biscrox   sridati   related segmentochora: ikepy   idasrid   sridati

At the first glance this CRF just looks as it would be a mere tristratic stack of segmentochora. But here the peppies of the upper segment happen to become corealmic with the paps of the medial. Thus in here they blend into gyepips instead.

Incidence matrix according to Dynkin symbol

```xoxx3oxox5ooxo&#xt   → height(1,2) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = 1/2
height(3,4) = (1+sqrt(5))/4 = 0.809017
(ike || pseudo id || pseudo srid || ti)

o...3o...5o...     | 12  *  *  * ♦  5  5  0   0  0  0   0  0  0 |  5  5  5  0  0  0  0  0  0  0  0  0  0  0  0 | 1  5  1  0  0  0  0  0 0
.o..3.o..5.o..     |  * 30  *  * ♦  0  2  4   4  0  0   0  0  0 |  0  1  4  2  2  4  2  0  0  0  0  0  0  0  0 | 0  2  2  2  1  0  0  0 0
..o.3..o.5..o.     |  *  * 60  * |  0  0  0   2  2  2   2  0  0 |  0  0  0  0  2  1  2  1  2  1  2  1  2  0  0 | 0  0  1  1  2  1  2  1 0
...o3...o5...o     |  *  *  * 60 |  0  0  0   0  0  0   2  1  2 |  0  0  0  0  0  0  0  0  0  0  2  2  1  2  1 | 0  0  0  0  0  2  1  1 1
-------------------+-------------+------------------------------+----------------------------------------------+-------------------------
x... .... ....     |  2  0  0  0 | 30  *  *   *  *  *   *  *  * |  2  1  0  0  0  0  0  0  0  0  0  0  0  0  0 | 1  2  0  0  0  0  0  0 0
oo..3oo..5oo..&#x  |  1  1  0  0 |  * 60  *   *  *  *   *  *  * |  0  1  2  0  0  0  0  0  0  0  0  0  0  0  0 | 0  2  1  0  0  0  0  0 0
.... .x.. ....     |  0  2  0  0 |  *  * 60   *  *  *   *  *  * |  0  0  1  1  0  1  0  0  0  0  0  0  0  0  0 | 0  1  1  1  0  0  0  0 0
.oo.3.oo.5.oo.&#x  |  0  1  1  0 |  *  *  * 120  *  *   *  *  * |  0  0  0  0  1  1  1  0  0  0  0  0  0  0  0 | 0  0  1  1  1  0  0  0 0
..x. .... ....     |  0  0  2  0 |  *  *  *   * 60  *   *  *  * |  0  0  0  0  1  0  0  1  1  0  1  0  0  0  0 | 0  0  0  1  1  1  1  0 0
.... .... ..x.     |  0  0  2  0 |  *  *  *   *  * 60   *  *  * |  0  0  0  0  0  0  1  0  1  1  0  0  1  0  0 | 0  0  1  0  1  0  1  1 0
..oo3..oo5..oo&#x  |  0  0  1  1 |  *  *  *   *  *  * 120  *  * |  0  0  0  0  0  0  0  0  0  0  1  1  1  0  0 | 0  0  0  0  0  1  1  1 0
...x .... ....     |  0  0  0  2 |  *  *  *   *  *  *   * 30  * |  0  0  0  0  0  0  0  0  0  0  2  0  0  2  0 | 0  0  0  0  0  2  1  0 1
.... ...x ....     |  0  0  0  2 |  *  *  *   *  *  *   *  * 60 |  0  0  0  0  0  0  0  0  0  0  0  1  0  1  1 | 0  0  0  0  0  1  0  1 1
-------------------+-------------+------------------------------+----------------------------------------------+-------------------------
x...3o... ....     |  3  0  0  0 |  3  0  0   0  0  0   0  0  0 | 20  *  *  *  *  *  *  *  *  *  *  *  *  *  * | 1  1  0  0  0  0  0  0 0
xo.. .... ....&#x  |  2  1  0  0 |  1  2  0   0  0  0   0  0  0 |  * 30  *  *  *  *  *  *  *  *  *  *  *  *  * | 0  2  0  0  0  0  0  0 0
.... ox.. ....&#x  |  1  2  0  0 |  0  2  1   0  0  0   0  0  0 |  *  * 60  *  *  *  *  *  *  *  *  *  *  *  * | 0  1  1  0  0  0  0  0 0
.o..3.x.. ....     |  0  3  0  0 |  0  0  3   0  0  0   0  0  0 |  *  *  * 20  *  *  *  *  *  *  *  *  *  *  * | 0  1  0  1  0  0  0  0 0
.ox. .... ....&#x  |  0  1  2  0 |  0  0  0   2  1  0   0  0  0 |  *  *  *  * 60  *  *  *  *  *  *  *  *  *  * | 0  0  0  1  1  0  0  0 0
.... .xo. ....&#x  |  0  2  1  0 |  0  0  1   2  0  0   0  0  0 |  *  *  *  *  * 60  *  *  *  *  *  *  *  *  * | 0  0  1  1  0  0  0  0 0
.... .... .ox.&#x  |  0  1  2  0 |  0  0  0   2  0  1   0  0  0 |  *  *  *  *  *  * 60  *  *  *  *  *  *  *  * | 0  0  1  0  1  0  0  0 0
..x.3..o. ....     |  0  0  3  0 |  0  0  0   0  3  0   0  0  0 |  *  *  *  *  *  *  * 20  *  *  *  *  *  *  * | 0  0  0  1  0  1  0  0 0
..x. .... ..x.     |  0  0  4  0 |  0  0  0   0  2  2   0  0  0 |  *  *  *  *  *  *  *  * 30  *  *  *  *  *  * | 0  0  0  0  1  0  1  0 0
.... ..o.5..x.     |  0  0  5  0 |  0  0  0   0  0  5   0  0  0 |  *  *  *  *  *  *  *  *  * 12  *  *  *  *  * | 0  0  1  0  0  0  0  1 0
..xx .... ....&#x  |  0  0  2  2 |  0  0  0   0  1  0   2  1  0 |  *  *  *  *  *  *  *  *  *  * 60  *  *  *  * | 0  0  0  0  0  1  1  0 0
.... ..ox ....&#x  |  0  0  1  2 |  0  0  0   0  0  0   2  0  1 |  *  *  *  *  *  *  *  *  *  *  * 60  *  *  * | 0  0  0  0  0  1  0  1 0
.... .... ..xo&#x  |  0  0  2  1 |  0  0  0   0  0  1   2  0  0 |  *  *  *  *  *  *  *  *  *  *  *  * 60  *  * | 0  0  0  0  0  0  1  1 0
...x3...x ....     |  0  0  0  6 |  0  0  0   0  0  0   0  3  3 |  *  *  *  *  *  *  *  *  *  *  *  *  * 20  * | 0  0  0  0  0  1  0  0 1
.... ...x5...o     |  0  0  0  5 |  0  0  0   0  0  0   0  0  5 |  *  *  *  *  *  *  *  *  *  *  *  *  *  * 12 | 0  0  0  0  0  0  0  1 1
-------------------+-------------+------------------------------+----------------------------------------------+-------------------------
x...3o...5o...     ♦ 12  0  0  0 | 30  0  0   0  0  0   0  0  0 | 20  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | 1  *  *  *  *  *  *  * *
xo..3ox.. ....&#x  ♦  3  3  0  0 |  3  6  3   0  0  0   0  0  0 |  1  3  3  1  0  0  0  0  0  0  0  0  0  0  0 | * 20  *  *  *  *  *  * *
.... oxo.5oox.&#xt ♦  1  5  5  0 |  0  5  5  10  0  5   0  0  0 |  0  0  5  0  0  5  5  0  0  1  0  0  0  0  0 | *  * 12  *  *  *  *  * *
.ox.3.xo. ....&#x  ♦  0  3  3  0 |  0  0  3   6  3  0   0  0  0 |  0  0  0  1  3  3  0  1  0  0  0  0  0  0  0 | *  *  * 20  *  *  *  * *
.ox. .... .ox.&#x  ♦  0  1  4  0 |  0  0  0   4  2  2   0  0  0 |  0  0  0  0  2  0  2  0  1  0  0  0  0  0  0 | *  *  *  * 30  *  *  * *
..xx3..ox ....&#x  ♦  0  0  3  6 |  0  0  0   0  3  0   6  3  3 |  0  0  0  0  0  0  0  1  0  0  3  3  0  1  0 | *  *  *  *  * 20  *  * *
..xx .... ..xo&#x  ♦  0  0  4  2 |  0  0  0   0  2  2   4  1  0 |  0  0  0  0  0  0  0  0  1  0  2  0  2  0  0 | *  *  *  *  *  * 30
.... ..ox5..xo&#x  ♦  0  0  5  5 |  0  0  0   0  0  5  10  0  5 |  0  0  0  0  0  0  0  0  0  1  0  5  5  0  1 | *  *  *  *  *  *  * 12 *
...x3...x5...o     ♦  0  0  0 60 |  0  0  0   0  0  0   0 30 60 |  0  0  0  0  0  0  0  0  0  0  0  0  0 20 12 | *  *  *  *  *  *  *  * 1
```