| Acronym | ... |
| Name | ike atop id atop srid atop ti |
|
Dihedral angles
(at margins) |
|
| Face vector | 162, 600, 584, 146 |
| Confer |
|
At the first glance this CRF just looks as it would be a mere tristratic stack of segmentochora. But here the peppies of the upper segment happen to become corealmic with the paps of the medial. Thus in here they blend into gyepips instead.
Incidence matrix according to Dynkin symbol
xoxx3oxox5ooxo&#xt → height(1,2) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = 1/2
height(3,4) = (1+sqrt(5))/4 = 0.809017
(ike || pseudo id || pseudo srid || ti)
o...3o...5o... | 12 * * * ♦ 5 5 0 0 0 0 0 0 0 | 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 | 1 5 1 0 0 0 0 0 0
.o..3.o..5.o.. | * 30 * * ♦ 0 2 4 4 0 0 0 0 0 | 0 1 4 2 2 4 2 0 0 0 0 0 0 0 0 | 0 2 2 2 1 0 0 0 0
..o.3..o.5..o. | * * 60 * | 0 0 0 2 2 2 2 0 0 | 0 0 0 0 2 1 2 1 2 1 2 1 2 0 0 | 0 0 1 1 2 1 2 1 0
...o3...o5...o | * * * 60 | 0 0 0 0 0 0 2 1 2 | 0 0 0 0 0 0 0 0 0 0 2 2 1 2 1 | 0 0 0 0 0 2 1 1 1
-------------------+-------------+------------------------------+----------------------------------------------+-------------------------
x... .... .... | 2 0 0 0 | 30 * * * * * * * * | 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0 0 0 0
oo..3oo..5oo..&#x | 1 1 0 0 | * 60 * * * * * * * | 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 1 0 0 0 0 0 0
.... .x.. .... | 0 2 0 0 | * * 60 * * * * * * | 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 0 0
.oo.3.oo.5.oo.&#x | 0 1 1 0 | * * * 120 * * * * * | 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 0 1 1 1 0 0 0 0
..x. .... .... | 0 0 2 0 | * * * * 60 * * * * | 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 | 0 0 0 1 1 1 1 0 0
.... .... ..x. | 0 0 2 0 | * * * * * 60 * * * | 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 | 0 0 1 0 1 0 1 1 0
..oo3..oo5..oo&#x | 0 0 1 1 | * * * * * * 120 * * | 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 | 0 0 0 0 0 1 1 1 0
...x .... .... | 0 0 0 2 | * * * * * * * 30 * | 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 | 0 0 0 0 0 2 1 0 1
.... ...x .... | 0 0 0 2 | * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 0 0 1 0 1 1
-------------------+-------------+------------------------------+----------------------------------------------+-------------------------
x...3o... .... | 3 0 0 0 | 3 0 0 0 0 0 0 0 0 | 20 * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0
xo.. .... ....&#x | 2 1 0 0 | 1 2 0 0 0 0 0 0 0 | * 30 * * * * * * * * * * * * * | 0 2 0 0 0 0 0 0 0
.... ox.. ....&#x | 1 2 0 0 | 0 2 1 0 0 0 0 0 0 | * * 60 * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0
.o..3.x.. .... | 0 3 0 0 | 0 0 3 0 0 0 0 0 0 | * * * 20 * * * * * * * * * * * | 0 1 0 1 0 0 0 0 0
.ox. .... ....&#x | 0 1 2 0 | 0 0 0 2 1 0 0 0 0 | * * * * 60 * * * * * * * * * * | 0 0 0 1 1 0 0 0 0
.... .xo. ....&#x | 0 2 1 0 | 0 0 1 2 0 0 0 0 0 | * * * * * 60 * * * * * * * * * | 0 0 1 1 0 0 0 0 0
.... .... .ox.&#x | 0 1 2 0 | 0 0 0 2 0 1 0 0 0 | * * * * * * 60 * * * * * * * * | 0 0 1 0 1 0 0 0 0
..x.3..o. .... | 0 0 3 0 | 0 0 0 0 3 0 0 0 0 | * * * * * * * 20 * * * * * * * | 0 0 0 1 0 1 0 0 0
..x. .... ..x. | 0 0 4 0 | 0 0 0 0 2 2 0 0 0 | * * * * * * * * 30 * * * * * * | 0 0 0 0 1 0 1 0 0
.... ..o.5..x. | 0 0 5 0 | 0 0 0 0 0 5 0 0 0 | * * * * * * * * * 12 * * * * * | 0 0 1 0 0 0 0 1 0
..xx .... ....&#x | 0 0 2 2 | 0 0 0 0 1 0 2 1 0 | * * * * * * * * * * 60 * * * * | 0 0 0 0 0 1 1 0 0
.... ..ox ....&#x | 0 0 1 2 | 0 0 0 0 0 0 2 0 1 | * * * * * * * * * * * 60 * * * | 0 0 0 0 0 1 0 1 0
.... .... ..xo&#x | 0 0 2 1 | 0 0 0 0 0 1 2 0 0 | * * * * * * * * * * * * 60 * * | 0 0 0 0 0 0 1 1 0
...x3...x .... | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 | * * * * * * * * * * * * * 20 * | 0 0 0 0 0 1 0 0 1
.... ...x5...o | 0 0 0 5 | 0 0 0 0 0 0 0 0 5 | * * * * * * * * * * * * * * 12 | 0 0 0 0 0 0 0 1 1
-------------------+-------------+------------------------------+----------------------------------------------+-------------------------
x...3o...5o... ♦ 12 0 0 0 | 30 0 0 0 0 0 0 0 0 | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * *
xo..3ox.. ....&#x ♦ 3 3 0 0 | 3 6 3 0 0 0 0 0 0 | 1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 | * 20 * * * * * * *
.... oxo.5oox.&#xt ♦ 1 5 5 0 | 0 5 5 10 0 5 0 0 0 | 0 0 5 0 0 5 5 0 0 1 0 0 0 0 0 | * * 12 * * * * * *
.ox.3.xo. ....&#x ♦ 0 3 3 0 | 0 0 3 6 3 0 0 0 0 | 0 0 0 1 3 3 0 1 0 0 0 0 0 0 0 | * * * 20 * * * * *
.ox. .... .ox.&#x ♦ 0 1 4 0 | 0 0 0 4 2 2 0 0 0 | 0 0 0 0 2 0 2 0 1 0 0 0 0 0 0 | * * * * 30 * * * *
..xx3..ox ....&#x ♦ 0 0 3 6 | 0 0 0 0 3 0 6 3 3 | 0 0 0 0 0 0 0 1 0 0 3 3 0 1 0 | * * * * * 20 * * *
..xx .... ..xo&#x ♦ 0 0 4 2 | 0 0 0 0 2 2 4 1 0 | 0 0 0 0 0 0 0 0 1 0 2 0 2 0 0 | * * * * * * 30 * *
.... ..ox5..xo&#x ♦ 0 0 5 5 | 0 0 0 0 0 5 10 0 5 | 0 0 0 0 0 0 0 0 0 1 0 5 5 0 1 | * * * * * * * 12 *
...x3...x5...o ♦ 0 0 0 60 | 0 0 0 0 0 0 0 30 60 | 0 0 0 0 0 0 0 0 0 0 0 0 0 20 12 | * * * * * * * * 1
© 2004-2025 | top of page |