Acronym cyte gysrit Name cyclotetragyrated small rhombitesseract Circumradius sqrt[2+sqrt(2)] = 1.847759 Dihedral angles at {4} between squippy and trip:   arccos(-sqrt[(3+2 sqrt(2))/6]) = 170.264390° at {3} between squippy and trip:   150° at {4} between sirco and squippy:   135° at {4} between sirco and trip:   arccos[-1/sqrt(3)] = 125.264390° at {3} between sirco and squippy:   120° at {4} between sirco and sirco:   90° Pattern(parts of total size:8x8 squares) ```A---3---A---4---A---3---A---4---A-... | \ : / | \ / | \ : / | \ / | 1===B===1===C===1===B===1===C===1= | / : \ | / \ | / : \ | / \ | A---3---A---4---A---3---A---4---A-... | : | | : | | 2 : 2 2 : 2 2 | : | | : | | A---3---A---4---A---3---A---4---A-... | \ : / | \ / | \ : / | \ / | 1===B===1===C===1===B===1===C===1= | / : \ | / \ | / : \ | / \ | A---3---A---4---A---3---A---4---A-... | : | | : | | 2 : 2 2 : 2 2 | : | | : | | A---3---A---4---A---3---A---4---A-... | \ : / | \ / | \ : / | \ / | ``` Confer uniform relative: srit   odip   segmentochora: {4} || op   related CRFs: cyted srit   bicyte gysrit

The symmetry of srit will be broken by an inscribed odip. Here the squares of odip are used for separation: in one of these halves the corresponding srit remainder will be placed (octs thereby will be halved into squippy), while in the other half a gyrated copy of the corresponding srit remainder is to be placed.

This polychoron can be either obtained by gyrating a cyclic ring of 4 sirco-sirco squares, or by augmenting alternate ops of both rings of ops within odip by {4} || op in such a way that neither trips nor squippies align square to square.

Incidence matrix

```64  *  * |  1  1  1  1  1  1  0  0 |  1  1  1  1  1  1  1  1  1  1 0 0 |  1  1  1  1 1 1  odip vertices (A)
* 16  * |  0  0  0  0  4  0  2  0 |  0  0  0  0  2  2  0  0  4  0 1 0 |  1  0  2  0 2 0  vertices of B-squares
*  * 16 |  0  0  0  0  0  4  0  2 |  0  0  0  0  0  0  2  2  0  4 0 1 |  0  1  0  2 0 2  vertices of C-squares
---------+-------------------------+-----------------------------------+----------------
2  0  0 | 32  *  *  *  *  *  *  * |  1  1  0  0  1  0  1  0  0  0 0 0 |  1  1  0  1 1 0  (1)
2  0  0 |  * 32  *  *  *  *  *  * |  0  0  1  1  0  0  0  0  1  0 0 0 |  0  0  1  0 1 1  (2)
2  0  0 |  *  * 32  *  *  *  *  * |  1  0  1  0  0  1  0  0  0  1 0 0 |  1  0  1  1 0 1  (3)
2  0  0 |  *  *  * 32  *  *  *  * |  0  1  0  1  0  0  0  1  0  0 0 0 |  0  1  0  0 1 1  (4)
1  1  0 |  *  *  *  * 64  *  *  * |  0  0  0  0  1  1  0  0  1  0 0 0 |  1  0  1  0 1 0
1  0  1 |  *  *  *  *  * 64  *  * |  0  0  0  0  0  0  1  1  0  1 0 0 |  0  1  0  1 0 1
0  2  0 |  *  *  *  *  *  * 16  * |  0  0  0  0  0  0  0  0  2  0 1 0 |  0  0  1  0 2 0  (:)
0  0  2 |  *  *  *  *  *  *  * 16 |  0  0  0  0  0  0  0  0  0  2 0 1 |  0  0  0  1 0 2  (=)
---------+-------------------------+-----------------------------------+----------------
4  0  0 |  2  0  2  0  0  0  0  0 | 16  *  *  *  *  *  *  *  *  * * * |  1  0  0  1 0 0
4  0  0 |  2  0  0  2  0  0  0  0 |  * 16  *  *  *  *  *  *  *  * * * |  0  1  0  0 1 0
4  0  0 |  0  2  2  0  0  0  0  0 |  *  * 16  *  *  *  *  *  *  * * * |  0  0  1  0 0 1
4  0  0 |  0  2  0  2  0  0  0  0 |  *  *  * 16  *  *  *  *  *  * * * |  0  0  0  0 1 1
2  1  0 |  1  0  0  0  2  0  0  0 |  *  *  *  * 32  *  *  *  *  * * * |  1  0  0  0 1 0
2  1  0 |  0  0  1  0  2  0  0  0 |  *  *  *  *  * 32  *  *  *  * * * |  1  0  1  0 0 0
2  0  1 |  1  0  0  0  0  2  0  0 |  *  *  *  *  *  * 32  *  *  * * * |  0  1  0  1 0 0
2  0  1 |  0  0  0  1  0  2  0  0 |  *  *  *  *  *  *  * 32  *  * * * |  0  1  0  0 0 1
2  2  0 |  0  1  0  0  2  0  1  0 |  *  *  *  *  *  *  *  * 32  * * * |  0  0  1  0 1 0
2  0  2 |  0  0  1  0  0  2  0  1 |  *  *  *  *  *  *  *  *  * 32 * * |  0  0  0  1 0 1
0  4  0 |  0  0  0  0  0  0  4  0 |  *  *  *  *  *  *  *  *  *  * 4 * |  0  0  0  0 2 0  B-squares
0  0  4 |  0  0  0  0  0  0  0  4 |  *  *  *  *  *  *  *  *  *  * * 4 |  0  0  0  0 0 2  C-squares
---------+-------------------------+-----------------------------------+----------------
4  1  0 |  2  0  2  0  4  0  0  0 |  1  0  0  0  2  2  0  0  0  0 0 0 | 16  *  *  * * *  B-squippy
4  0  1 |  2  0  0  2  0  4  0  0 |  0  1  0  0  0  0  2  2  0  0 0 0 |  * 16  *  * * *  C-squippy
4  2  0 |  0  2  2  0  4  0  1  0 |  0  0  1  0  0  2  0  0  2  0 0 0 |  *  * 16  * * *  B-trip
4  0  2 |  2  0  2  0  0  4  0  1 |  1  0  0  0  0  0  2  0  0  2 0 0 |  *  *  * 16 * *  C-trip
16  8  0 |  8  8  0  8 16  0  8  0 |  0  4  0  4  8  0  0  0  8  0 2 0 |  *  *  *  * 4 *  B-sirco
16  0  8 |  0  8  8  8  0 16  0  8 |  0  0  4  4  0  0  0  8  0  8 0 2 |  *  *  *  * * 4  C-sirco
```