Acronym cyte gysrit
Name cyclotetragyrated small rhombitesseract
Circumradius sqrt[2+sqrt(2)] = 1.847759
Dihedral angles
Pattern
(parts of total size:
8x8 squares)
A---3---A---4---A---3---A---4---A-...
| \ : / | \   / | \ : / | \   / |    
1===B===1===C===1===B===1===C===1=   
| / : \ | /   \ | / : \ | /   \ |    
A---3---A---4---A---3---A---4---A-...
|   :   |       |   :   |       |    
2   :   2       2   :   2       2    
|   :   |       |   :   |       |    
A---3---A---4---A---3---A---4---A-...
| \ : / | \   / | \ : / | \   / |    
1===B===1===C===1===B===1===C===1=   
| / : \ | /   \ | / : \ | /   \ |    
A---3---A---4---A---3---A---4---A-...
|   :   |       |   :   |       |    
2   :   2       2   :   2       2    
|   :   |       |   :   |       |    
A---3---A---4---A---3---A---4---A-...
| \ : / | \   / | \ : / | \   / |    
Face vector 96, 288, 264, 72
Confer
uniform relative:
srit   odip  
segmentochora:
{4} || op  
related CRFs:
cyted srit   bicyte gysrit  

The symmetry of srit will be broken by an inscribed odip. Here the squares of odip are used for separation: in one of these halves the corresponding srit remainder will be placed (octs thereby will be halved into squippy), while in the other half a gyrated copy of the corresponding srit remainder is to be placed.

This polychoron can be either obtained by gyrating a cyclic ring of 4 sirco-sirco squares, or by augmenting alternate ops of both rings of ops within odip by {4} || op in such a way that neither trips nor squippies align square to square.


Incidence matrix

64  *  * |  1  1  1  1  1  1  0  0 |  1  1  1  1  1  1  1  1  1  1 0 0 |  1  1  1  1 1 1  odip vertices (A)
 * 16  * |  0  0  0  0  4  0  2  0 |  0  0  0  0  2  2  0  0  4  0 1 0 |  1  0  2  0 2 0  vertices of B-squares
 *  * 16 |  0  0  0  0  0  4  0  2 |  0  0  0  0  0  0  2  2  0  4 0 1 |  0  1  0  2 0 2  vertices of C-squares
---------+-------------------------+-----------------------------------+----------------
 2  0  0 | 32  *  *  *  *  *  *  * |  1  1  0  0  1  0  1  0  0  0 0 0 |  1  1  0  1 1 0  (1)
 2  0  0 |  * 32  *  *  *  *  *  * |  0  0  1  1  0  0  0  0  1  0 0 0 |  0  0  1  0 1 1  (2)
 2  0  0 |  *  * 32  *  *  *  *  * |  1  0  1  0  0  1  0  0  0  1 0 0 |  1  0  1  1 0 1  (3)
 2  0  0 |  *  *  * 32  *  *  *  * |  0  1  0  1  0  0  0  1  0  0 0 0 |  0  1  0  0 1 1  (4)
 1  1  0 |  *  *  *  * 64  *  *  * |  0  0  0  0  1  1  0  0  1  0 0 0 |  1  0  1  0 1 0
 1  0  1 |  *  *  *  *  * 64  *  * |  0  0  0  0  0  0  1  1  0  1 0 0 |  0  1  0  1 0 1
 0  2  0 |  *  *  *  *  *  * 16  * |  0  0  0  0  0  0  0  0  2  0 1 0 |  0  0  1  0 2 0  (:)
 0  0  2 |  *  *  *  *  *  *  * 16 |  0  0  0  0  0  0  0  0  0  2 0 1 |  0  0  0  1 0 2  (=)
---------+-------------------------+-----------------------------------+----------------
 4  0  0 |  2  0  2  0  0  0  0  0 | 16  *  *  *  *  *  *  *  *  * * * |  1  0  0  1 0 0
 4  0  0 |  2  0  0  2  0  0  0  0 |  * 16  *  *  *  *  *  *  *  * * * |  0  1  0  0 1 0
 4  0  0 |  0  2  2  0  0  0  0  0 |  *  * 16  *  *  *  *  *  *  * * * |  0  0  1  0 0 1
 4  0  0 |  0  2  0  2  0  0  0  0 |  *  *  * 16  *  *  *  *  *  * * * |  0  0  0  0 1 1
 2  1  0 |  1  0  0  0  2  0  0  0 |  *  *  *  * 32  *  *  *  *  * * * |  1  0  0  0 1 0
 2  1  0 |  0  0  1  0  2  0  0  0 |  *  *  *  *  * 32  *  *  *  * * * |  1  0  1  0 0 0
 2  0  1 |  1  0  0  0  0  2  0  0 |  *  *  *  *  *  * 32  *  *  * * * |  0  1  0  1 0 0
 2  0  1 |  0  0  0  1  0  2  0  0 |  *  *  *  *  *  *  * 32  *  * * * |  0  1  0  0 0 1
 2  2  0 |  0  1  0  0  2  0  1  0 |  *  *  *  *  *  *  *  * 32  * * * |  0  0  1  0 1 0
 2  0  2 |  0  0  1  0  0  2  0  1 |  *  *  *  *  *  *  *  *  * 32 * * |  0  0  0  1 0 1
 0  4  0 |  0  0  0  0  0  0  4  0 |  *  *  *  *  *  *  *  *  *  * 4 * |  0  0  0  0 2 0  B-squares
 0  0  4 |  0  0  0  0  0  0  0  4 |  *  *  *  *  *  *  *  *  *  * * 4 |  0  0  0  0 0 2  C-squares
---------+-------------------------+-----------------------------------+----------------
 4  1  0 |  2  0  2  0  4  0  0  0 |  1  0  0  0  2  2  0  0  0  0 0 0 | 16  *  *  * * *  B-squippy
 4  0  1 |  2  0  0  2  0  4  0  0 |  0  1  0  0  0  0  2  2  0  0 0 0 |  * 16  *  * * *  C-squippy
 4  2  0 |  0  2  2  0  4  0  1  0 |  0  0  1  0  0  2  0  0  2  0 0 0 |  *  * 16  * * *  B-trip
 4  0  2 |  2  0  2  0  0  4  0  1 |  1  0  0  0  0  0  2  0  0  2 0 0 |  *  *  * 16 * *  C-trip
16  8  0 |  8  8  0  8 16  0  8  0 |  0  4  0  4  8  0  0  0  8  0 2 0 |  *  *  *  * 4 *  B-sirco
16  0  8 |  0  8  8  8  0 16  0  8 |  0  0  4  4  0  0  0  8  0  8 0 2 |  *  *  *  * * 4  C-sirco

© 2004-2024
top of page