Acronym | cyte gysrit |
Name | cyclotetragyrated small rhombitesseract |
Circumradius | sqrt[2+sqrt(2)] = 1.847759 |
Dihedral angles | |
Pattern (parts of total size: 8x8 squares) |
A---3---A---4---A---3---A---4---A-... | \ : / | \ / | \ : / | \ / | 1===B===1===C===1===B===1===C===1= | / : \ | / \ | / : \ | / \ | A---3---A---4---A---3---A---4---A-... | : | | : | | 2 : 2 2 : 2 2 | : | | : | | A---3---A---4---A---3---A---4---A-... | \ : / | \ / | \ : / | \ / | 1===B===1===C===1===B===1===C===1= | / : \ | / \ | / : \ | / \ | A---3---A---4---A---3---A---4---A-... | : | | : | | 2 : 2 2 : 2 2 | : | | : | | A---3---A---4---A---3---A---4---A-... | \ : / | \ / | \ : / | \ / | |
Face vector | 96, 288, 264, 72 |
Confer |
|
The symmetry of srit will be broken by an inscribed odip. Here the squares of odip are used for separation: in one of these halves the corresponding srit remainder will be placed (octs thereby will be halved into squippy), while in the other half a gyrated copy of the corresponding srit remainder is to be placed.
This polychoron can be either obtained by gyrating a cyclic ring of 4 sirco-sirco squares, or by augmenting alternate ops of both rings of ops within odip by {4} || op in such a way that neither trips nor squippies align square to square.
64 * * | 1 1 1 1 1 1 0 0 | 1 1 1 1 1 1 1 1 1 1 0 0 | 1 1 1 1 1 1 odip vertices (A) * 16 * | 0 0 0 0 4 0 2 0 | 0 0 0 0 2 2 0 0 4 0 1 0 | 1 0 2 0 2 0 vertices of B-squares * * 16 | 0 0 0 0 0 4 0 2 | 0 0 0 0 0 0 2 2 0 4 0 1 | 0 1 0 2 0 2 vertices of C-squares ---------+-------------------------+-----------------------------------+---------------- 2 0 0 | 32 * * * * * * * | 1 1 0 0 1 0 1 0 0 0 0 0 | 1 1 0 1 1 0 (1) 2 0 0 | * 32 * * * * * * | 0 0 1 1 0 0 0 0 1 0 0 0 | 0 0 1 0 1 1 (2) 2 0 0 | * * 32 * * * * * | 1 0 1 0 0 1 0 0 0 1 0 0 | 1 0 1 1 0 1 (3) 2 0 0 | * * * 32 * * * * | 0 1 0 1 0 0 0 1 0 0 0 0 | 0 1 0 0 1 1 (4) 1 1 0 | * * * * 64 * * * | 0 0 0 0 1 1 0 0 1 0 0 0 | 1 0 1 0 1 0 1 0 1 | * * * * * 64 * * | 0 0 0 0 0 0 1 1 0 1 0 0 | 0 1 0 1 0 1 0 2 0 | * * * * * * 16 * | 0 0 0 0 0 0 0 0 2 0 1 0 | 0 0 1 0 2 0 (:) 0 0 2 | * * * * * * * 16 | 0 0 0 0 0 0 0 0 0 2 0 1 | 0 0 0 1 0 2 (=) ---------+-------------------------+-----------------------------------+---------------- 4 0 0 | 2 0 2 0 0 0 0 0 | 16 * * * * * * * * * * * | 1 0 0 1 0 0 4 0 0 | 2 0 0 2 0 0 0 0 | * 16 * * * * * * * * * * | 0 1 0 0 1 0 4 0 0 | 0 2 2 0 0 0 0 0 | * * 16 * * * * * * * * * | 0 0 1 0 0 1 4 0 0 | 0 2 0 2 0 0 0 0 | * * * 16 * * * * * * * * | 0 0 0 0 1 1 2 1 0 | 1 0 0 0 2 0 0 0 | * * * * 32 * * * * * * * | 1 0 0 0 1 0 2 1 0 | 0 0 1 0 2 0 0 0 | * * * * * 32 * * * * * * | 1 0 1 0 0 0 2 0 1 | 1 0 0 0 0 2 0 0 | * * * * * * 32 * * * * * | 0 1 0 1 0 0 2 0 1 | 0 0 0 1 0 2 0 0 | * * * * * * * 32 * * * * | 0 1 0 0 0 1 2 2 0 | 0 1 0 0 2 0 1 0 | * * * * * * * * 32 * * * | 0 0 1 0 1 0 2 0 2 | 0 0 1 0 0 2 0 1 | * * * * * * * * * 32 * * | 0 0 0 1 0 1 0 4 0 | 0 0 0 0 0 0 4 0 | * * * * * * * * * * 4 * | 0 0 0 0 2 0 B-squares 0 0 4 | 0 0 0 0 0 0 0 4 | * * * * * * * * * * * 4 | 0 0 0 0 0 2 C-squares ---------+-------------------------+-----------------------------------+---------------- 4 1 0 | 2 0 2 0 4 0 0 0 | 1 0 0 0 2 2 0 0 0 0 0 0 | 16 * * * * * B-squippy 4 0 1 | 2 0 0 2 0 4 0 0 | 0 1 0 0 0 0 2 2 0 0 0 0 | * 16 * * * * C-squippy 4 2 0 | 0 2 2 0 4 0 1 0 | 0 0 1 0 0 2 0 0 2 0 0 0 | * * 16 * * * B-trip 4 0 2 | 2 0 2 0 0 4 0 1 | 1 0 0 0 0 0 2 0 0 2 0 0 | * * * 16 * * C-trip 16 8 0 | 8 8 0 8 16 0 8 0 | 0 4 0 4 8 0 0 0 8 0 2 0 | * * * * 4 * B-sirco 16 0 8 | 0 8 8 8 0 16 0 8 | 0 0 4 4 0 0 0 8 0 8 0 2 | * * * * * 4 C-sirco
© 2004-2024 | top of page |