Acronym tetoct
Name tetrahedron-octahedron duoprism,
vertex figure of sez
Circumradius sqrt(7/8) = 0.935414
Volume 1/18 = 0.055556
Dihedral angles
(at margins)
Face vector 24, 84, 128, 106, 50, 12
Confer
general polytopal classes:
Wythoffian polypeta   lace simplices  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

x3o3o x3o4o

. . . . . . | 24 |  3  4 |  3 12  4 | 1 12 12 1 |  4 12 3 | 4 3
------------+----+-------+----------+-----------+---------+----
x . . . . . |  2 | 36  * |  2  4  0 | 1  8  4 0 |  4  8 1 | 4 2
. . . x . . |  2 |  * 48 |  0  3  2 | 0  3  6 1 |  1  6 3 | 2 3
------------+----+-------+----------+-----------+---------+----
x3o . . . . |  3 |  3  0 | 24  *  * | 1  4  0 0 |  4  4 0 | 4 1
x . . x . . |  4 |  2  2 |  * 72  * | 0  2  2 0 |  1  4 1 | 2 2
. . . x3o . |  3 |  0  3 |  *  * 32 | 0  0  3 1 |  0  3 3 | 1 3
------------+----+-------+----------+-----------+---------+----
x3o3o . . .   4 |  6  0 |  4  0  0 | 6  *  * * |  4  0 0 | 4 0
x3o . x . .   6 |  6  3 |  2  3  0 | * 48  * * |  1  2 0 | 2 1
x . . x3o .   6 |  3  6 |  0  3  2 | *  * 48 * |  0  2 1 | 1 2
. . . x3o4o   6 |  0 12 |  0  0  8 | *  *  * 4 |  0  0 3 | 0 3
------------+----+-------+----------+-----------+---------+----
x3o3o x . .   8 | 12  4 |  8  6  0 | 2  4  0 0 | 12  * * | 2 0
x3o . x3o .   9 |  9  9 |  3  9  3 | 0  3  3 0 |  * 32 * | 1 1
x . . x3o4o  12 |  6 24 |  0 12 16 | 0  0  8 2 |  *  * 6 | 0 2
------------+----+-------+----------+-----------+---------+----
x3o3o x3o .  12 | 18 12 | 12 18  4 | 3 12  6 0 |  3  4 0 | 8 *
x3o . x3o4o  18 | 18 36 |  6 36 24 | 0 12 24 3 |  0  8 3 | * 4

x3o3o o3x3o

. . . . . . | 24 |  3  4 |  3 12  2  2 | 1 12  6  6 1 |  4  6  6 3 | 2 2 3
------------+----+-------+-------------+--------------+------------+------
x . . . . . |  2 | 36  * |  2  4  0  0 | 1  8  2  2 0 |  4  4  4 1 | 2 2 2
. . . . x . |  2 |  * 48 |  0  3  1  1 | 0  3  3  3 1 |  1  3  3 3 | 1 1 3
------------+----+-------+-------------+--------------+------------+------
x3o . . . . |  3 |  3  0 | 24  *  *  * | 1  4  0  0 0 |  4  2  2 0 | 2 2 1
x . . . x . |  4 |  2  2 |  * 72  *  * | 0  2  1  1 0 |  1  2  2 1 | 1 1 2
. . . o3x . |  3 |  0  3 |  *  * 16  * | 0  0  3  0 1 |  0  3  0 3 | 1 0 3
. . . . x3o |  3 |  0  3 |  *  *  * 16 | 0  0  0  3 1 |  0  0  3 3 | 0 1 3
------------+----+-------+-------------+--------------+------------+------
x3o3o . . .   4 |  6  0 |  4  0  0  0 | 6  *  *  * * |  4  0  0 0 | 2 2 0
x3o . . x .   6 |  6  3 |  2  3  0  0 | * 48  *  * * |  1  1  1 0 | 1 1 1
x . . o3x .   6 |  3  6 |  0  3  2  0 | *  * 24  * * |  0  2  0 1 | 1 0 2
x . . . x3o   6 |  3  6 |  0  3  0  2 | *  *  * 24 * |  0  0  2 1 | 0 1 2
. . . o3x3o   6 |  0 12 |  0  0  4  4 | *  *  *  * 4 |  0  0  0 3 | 0 0 3
------------+----+-------+-------------+--------------+------------+------
x3o3o . x .   8 | 12  4 |  8  6  0  0 | 2  4  0  0 0 | 12  *  * * | 1 1 0
x3o . o3x .   9 |  9  9 |  3  9  3  0 | 0  3  3  0 0 |  * 16  * * | 1 0 1
x3o . . x3o   9 |  9  9 |  3  9  0  3 | 0  3  0  3 0 |  *  * 16 * | 0 1 1
x . . o3x3o  12 |  6 24 |  0 12  8  8 | 0  0  4  4 2 |  *  *  * 6 | 0 0 2
------------+----+-------+-------------+--------------+------------+------
x3o3o o3x .  12 | 18 12 | 12 18  4  0 | 3 12  6  0 0 |  3  4  0 0 | 4 * *
x3o3o . x3o  12 | 18 12 | 12 18  0  4 | 3 12  0  6 0 |  3  0  4 0 | * 4 *
x3o . o3x3o  18 | 18 36 |  6 36 12 12 | 0 12 12 12 3 |  0  4  4 3 | * * 4

© 2004-2025
top of page