Acronym tetcube
Name tetrahedron - cube duoprism
|,>,O device line pyramid pyramid prism prism prism = |>>|||
Circumradius sqrt(9/8) = 1.060660
Volume sqrt(2)/12 = 0.117851
Dihedral angles
Face vector 32, 96, 128, 96, 42, 10
Confer
more general:
n,tet-dippip  
general polytopal classes:
Wythoffian polypeta   lace simplices  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

x3o3o o3o4x

. . . . . . | 32 |  3  3 |  3  9  3 | 1  9  9 1 |  3  9 3 | 3 3
------------+----+-------+----------+-----------+---------+----
x . . . . . |  2 | 48  * |  2  3  0 | 1  6  3 0 |  3  6 1 | 3 2
. . . . . x |  2 |  * 48 |  0  3  2 | 0  3  6 1 |  1  6 3 | 2 3
------------+----+-------+----------+-----------+---------+----
x3o . . . . |  3 |  3  0 | 32  *  * | 1  3  0 0 |  3  3 0 | 3 1
x . . . . x |  4 |  2  2 |  * 72  * | 0  2  2 0 |  1  4 1 | 2 2
. . . . o4x |  4 |  0  4 |  *  * 24 | 0  0  3 1 |  0  3 3 | 1 3
------------+----+-------+----------+-----------+---------+----
x3o3o . . .   4 |  6  0 |  4  0  0 | 8  *  * * |  3  0 0 | 3 0
x3o . . . x   6 |  6  3 |  2  3  0 | * 48  * * |  1  2 0 | 2 1
x . . . o4x   8 |  4  8 |  0  4  2 | *  * 36 * |  0  2 1 | 1 2
. . . o3o4x   8 |  0 12 |  0  0  6 | *  *  * 4 |  0  0 3 | 0 3
------------+----+-------+----------+-----------+---------+----
x3o3o . . x   8 | 12  4 |  8  6  0 | 2  4  0 0 | 12  * * | 2 0
x3o . . o4x  12 | 12 12 |  4 12  3 | 0  4  3 0 |  * 24 * | 1 1
x . . o3o4x  16 |  8 24 |  0 12 12 | 0  0  6 2 |  *  * 6 | 0 2
------------+----+-------+----------+-----------+---------+----
x3o3o . o4x  16 | 24 16 | 16 24  4 | 4 16  6 0 |  4  4 0 | 6 *
x3o . o3o4x  24 | 24 36 |  8 36 18 | 0 12 18 3 |  0  6 3 | * 4

x x4o x3o3o

. . . . . . | 32 |  1  2  3 |  2  3 1  6  3 | 1  6  3  3  6 1 | 3  6 1 3 2 | 3 2 1
------------+----+----------+---------------+-----------------+------------+------
x . . . . . |  2 | 16  *  * |  2  3 0  0  0 | 1  6  3  0  0 0 | 3  6 1 0 0 | 3 2 0
. x . . . . |  2 |  * 32  * |  1  0 1  3  0 | 1  3  0  3  3 0 | 3  3 0 3 1 | 3 1 1
. . . x . . |  2 |  *  * 48 |  0  1 0  2  2 | 0  2  2  1  4 1 | 1  4 1 2 2 | 2 2 1
------------+----+----------+---------------+-----------------+------------+------
x x . . . . |  4 |  2  2  0 | 16  * *  *  * | 1  3  0  0  0 0 | 3  3 0 0 0 | 3 1 0
x . . x . . |  4 |  2  0  2 |  * 24 *  *  * | 0  2  2  0  0 0 | 1  4 1 0 0 | 2 2 0
. x4o . . . |  4 |  0  4  0 |  *  * 8  *  * | 1  0  0  3  0 0 | 3  0 0 3 0 | 3 0 1
. x . x . . |  4 |  0  2  2 |  *  * * 48  * | 0  1  0  1  2 0 | 1  2 0 2 1 | 2 1 1
. . . x3o . |  3 |  0  0  3 |  *  * *  * 32 | 0  0  1  0  2 1 | 0  2 1 1 2 | 1 2 1
------------+----+----------+---------------+-----------------+------------+------
x x4o . . .   8 |  4  8  0 |  4  0 2  0  0 | 4  *  *  *  * * | 3  0 0 0 0 | 3 0 0
x x . x . .   8 |  4  4  4 |  2  2 0  2  0 | * 24  *  *  * * | 1  2 0 0 0 | 2 1 0
x . . x3o .   6 |  3  0  6 |  0  3 0  0  2 | *  * 16  *  * * | 0  2 1 0 0 | 1 2 0
. x4o x . .   8 |  0  8  4 |  0  0 2  4  0 | *  *  * 12  * * | 1  0 0 2 0 | 2 0 1
. x . x3o .   6 |  0  3  6 |  0  0 0  3  2 | *  *  *  * 32 * | 0  1 0 1 1 | 1 1 1
. . . x3o3o   4 |  0  0  6 |  0  0 0  0  4 | *  *  *  *  * 8 | 0  0 1 0 2 | 0 2 1
------------+----+----------+---------------+-----------------+------------+------
x x4o x . .  16 |  8 16  8 |  8  4 4  8  0 | 2  4  0  2  0 0 | 6  * * * * | 2 0 0
x x . x3o .  12 |  6  6 12 |  3  6 0  6  4 | 0  3  2  0  2 0 | * 16 * * * | 1 1 0
x . . x3o3o   8 |  4  0 12 |  0  6 0  0  8 | 0  0  4  0  0 2 | *  * 4 * * | 0 2 0
. x4o x3o .  12 |  0 12 12 |  0  0 3 12  4 | 0  0  0  3  4 0 | *  * * 8 * | 1 0 1
. x . x3o3o   8 |  0  4 12 |  0  0 0  6  8 | 0  0  0  0  4 2 | *  * * * 8 | 0 1 1
------------+----+----------+---------------+-----------------+------------+------
x x4o x3o .  24 | 12 24 24 | 12 12 6 24  8 | 3 12  4  6  8 0 | 3  4 0 2 0 | 4 * *
x x . x3o3o  16 |  8  8 24 |  4 12 0 12 16 | 0  6  8  0  8 4 | 0  4 2 0 2 | * 4 *
. x4o x3o3o  16 |  0 16 24 |  0  0 4 24 16 | 0  0  0  6 16 4 | 0  0 0 4 4 | * * 2

x x x x3o3o

. . . . . . | 32 |  1  1  1  3 | 1 1  3 1  3  3  3 | 1  3  3  3  3  3  3 1 | 3 3 3 1 3 1 1 | 3 1 1 1
------------+----+-------------+-------------------+-----------------------+---------------+--------
x . . . . . |  2 | 16  *  *  * | 1 1  3 0  0  0  0 | 1  3  3  3  0  0  0 0 | 3 3 3 1 0 0 0 | 3 1 1 0
. x . . . . |  2 |  * 16  *  * | 1 0  0 1  3  0  0 | 1  3  0  0  3  3  0 0 | 3 3 0 0 3 1 0 | 3 1 0 1
. . x . . . |  2 |  *  * 16  * | 0 1  0 1  0  3  0 | 1  0  3  0  3  0  3 0 | 3 0 3 0 3 0 1 | 3 0 1 1
. . . x . . |  2 |  *  *  * 48 | 0 0  1 0  1  1  2 | 0  1  1  2  1  2  2 1 | 1 2 2 1 2 1 1 | 2 1 1 1
------------+----+-------------+-------------------+-----------------------+---------------+--------
x x . . . . |  4 |  2  2  0  0 | 8 *  * *  *  *  * | 1  3  0  0  0  0  0 0 | 3 3 0 0 0 0 0 | 3 1 0 0
x . x . . . |  4 |  2  0  2  0 | * 8  * *  *  *  * | 1  0  3  0  0  0  0 0 | 3 0 3 0 0 0 0 | 3 0 1 0
x . . x . . |  4 |  2  0  0  2 | * * 24 *  *  *  * | 0  1  1  2  0  0  0 0 | 1 2 2 1 0 0 0 | 2 1 1 0
. x x . . . |  4 |  0  2  2  0 | * *  * 8  *  *  * | 1  0  0  0  3  0  0 0 | 3 0 0 0 3 0 0 | 3 0 0 1
. x . x . . |  4 |  0  2  0  2 | * *  * * 24  *  * | 0  1  0  0  1  2  0 0 | 1 2 0 0 2 1 0 | 2 1 0 1
. . x x . . |  4 |  0  0  2  2 | * *  * *  * 24  * | 0  0  1  0  1  0  2 0 | 1 0 2 0 2 0 1 | 2 0 1 1
. . . x3o . |  3 |  0  0  0  3 | * *  * *  *  * 32 | 0  0  0  1  0  1  1 1 | 0 1 1 1 1 1 1 | 1 1 1 1
------------+----+-------------+-------------------+-----------------------+---------------+--------
x x x . . .   8 |  4  4  4  0 | 2 2  0 2  0  0  0 | 4  *  *  *  *  *  * * | 3 0 0 0 0 0 0 | 3 0 0 0
x x . x . .   8 |  4  4  0  4 | 2 0  2 0  2  0  0 | * 12  *  *  *  *  * * | 1 2 0 0 0 0 0 | 2 1 0 0
x . x x . .   8 |  4  0  4  4 | 0 2  2 0  0  2  0 | *  * 12  *  *  *  * * | 1 0 2 0 0 0 0 | 2 0 1 0
x . . x3o .   6 |  3  0  0  6 | 0 0  3 0  0  0  2 | *  *  * 16  *  *  * * | 0 1 1 1 0 0 0 | 1 1 1 0
. x x x . .   8 |  0  4  4  4 | 0 0  0 2  2  2  0 | *  *  *  * 12  *  * * | 1 0 0 0 2 0 0 | 2 0 0 1
. x . x3o .   6 |  0  3  0  6 | 0 0  0 0  3  0  2 | *  *  *  *  * 16  * * | 0 1 0 0 1 1 0 | 1 1 0 1
. . x x3o .   6 |  0  0  3  6 | 0 0  0 0  0  3  2 | *  *  *  *  *  * 16 * | 0 0 1 0 1 0 1 | 1 0 1 1
. . . x3o3o   4 |  0  0  0  6 | 0 0  0 0  0  0  4 | *  *  *  *  *  *  * 8 | 0 0 0 1 0 1 1 | 0 1 1 1
------------+----+-------------+-------------------+-----------------------+---------------+--------
x x x x . .  16 |  8  8  8  8 | 4 4  4 4  4  4  0 | 2  2  2  0  2  0  0 0 | 6 * * * * * * | 2 0 0 0
x x . x3o .  12 |  6  6  0 12 | 3 0  6 0  6  0  4 | 0  3  0  2  0  2  0 0 | * 8 * * * * * | 1 1 0 0
x . x x3o .  12 |  6  0  6 12 | 0 3  6 0  0  6  4 | 0  0  3  2  0  0  2 0 | * * 8 * * * * | 1 0 1 0
x . . x3o3o   8 |  4  0  0 12 | 0 0  6 0  0  0  8 | 0  0  0  4  0  0  0 2 | * * * 4 * * * | 0 1 1 0
. x x x3o .  12 |  0  6  6 12 | 0 0  0 3  6  6  4 | 0  0  0  0  3  2  2 0 | * * * * 8 * * | 1 0 0 1
. x . x3o3o   8 |  0  4  0 12 | 0 0  0 0  6  0  8 | 0  0  0  0  0  4  0 2 | * * * * * 4 * | 0 1 0 1
. . x x3o3o   8 |  0  0  4 12 | 0 0  0 0  0  6  8 | 0  0  0  0  0  0  4 2 | * * * * * * 4 | 0 0 1 1
------------+----+-------------+-------------------+-----------------------+---------------+--------
x x x x3o .  24 | 12 12 12 24 | 6 6 12 6 12 12  8 | 3  6  6  4  6  4  4 0 | 3 2 2 0 2 0 0 | 4 * * *
x x . x3o3o  16 |  8  8  0 24 | 4 0 12 0 12  0 16 | 0  6  0  8  0  8  0 4 | 0 4 0 2 0 2 0 | * 2 * *
x . x x3o3o  16 |  8  0  8 24 | 0 4 12 0  0 12 16 | 0  0  6  8  0  0  8 4 | 0 0 4 2 0 0 2 | * * 2 *
. x x x3o3o  16 |  0  8  8 24 | 0 0  0 4 12 12 16 | 0  0  0  0  6  8  8 4 | 0 0 0 0 4 2 2 | * * * 2

© 2004-2025
top of page