Acronym | tetcube |
Name | tetrahedron - cube duoprism |
|,>,O device | line pyramid pyramid prism prism prism = |>>||| |
Circumradius | sqrt(9/8) = 1.060660 |
Volume | sqrt(2)/12 = 0.117851 |
Dihedral angles | |
Face vector | 32, 96, 128, 96, 42, 10 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
x3o3o o3o4x . . . . . . | 32 | 3 3 | 3 9 3 | 1 9 9 1 | 3 9 3 | 3 3 ------------+----+-------+----------+-----------+---------+---- x . . . . . | 2 | 48 * | 2 3 0 | 1 6 3 0 | 3 6 1 | 3 2 . . . . . x | 2 | * 48 | 0 3 2 | 0 3 6 1 | 1 6 3 | 2 3 ------------+----+-------+----------+-----------+---------+---- x3o . . . . | 3 | 3 0 | 32 * * | 1 3 0 0 | 3 3 0 | 3 1 x . . . . x | 4 | 2 2 | * 72 * | 0 2 2 0 | 1 4 1 | 2 2 . . . . o4x | 4 | 0 4 | * * 24 | 0 0 3 1 | 0 3 3 | 1 3 ------------+----+-------+----------+-----------+---------+---- x3o3o . . . ♦ 4 | 6 0 | 4 0 0 | 8 * * * | 3 0 0 | 3 0 x3o . . . x ♦ 6 | 6 3 | 2 3 0 | * 48 * * | 1 2 0 | 2 1 x . . . o4x ♦ 8 | 4 8 | 0 4 2 | * * 36 * | 0 2 1 | 1 2 . . . o3o4x ♦ 8 | 0 12 | 0 0 6 | * * * 4 | 0 0 3 | 0 3 ------------+----+-------+----------+-----------+---------+---- x3o3o . . x ♦ 8 | 12 4 | 8 6 0 | 2 4 0 0 | 12 * * | 2 0 x3o . . o4x ♦ 12 | 12 12 | 4 12 3 | 0 4 3 0 | * 24 * | 1 1 x . . o3o4x ♦ 16 | 8 24 | 0 12 12 | 0 0 6 2 | * * 6 | 0 2 ------------+----+-------+----------+-----------+---------+---- x3o3o . o4x ♦ 16 | 24 16 | 16 24 4 | 4 16 6 0 | 4 4 0 | 6 * x3o . o3o4x ♦ 24 | 24 36 | 8 36 18 | 0 12 18 3 | 0 6 3 | * 4
x x4o x3o3o . . . . . . | 32 | 1 2 3 | 2 3 1 6 3 | 1 6 3 3 6 1 | 3 6 1 3 2 | 3 2 1 ------------+----+----------+---------------+-----------------+------------+------ x . . . . . | 2 | 16 * * | 2 3 0 0 0 | 1 6 3 0 0 0 | 3 6 1 0 0 | 3 2 0 . x . . . . | 2 | * 32 * | 1 0 1 3 0 | 1 3 0 3 3 0 | 3 3 0 3 1 | 3 1 1 . . . x . . | 2 | * * 48 | 0 1 0 2 2 | 0 2 2 1 4 1 | 1 4 1 2 2 | 2 2 1 ------------+----+----------+---------------+-----------------+------------+------ x x . . . . | 4 | 2 2 0 | 16 * * * * | 1 3 0 0 0 0 | 3 3 0 0 0 | 3 1 0 x . . x . . | 4 | 2 0 2 | * 24 * * * | 0 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0 . x4o . . . | 4 | 0 4 0 | * * 8 * * | 1 0 0 3 0 0 | 3 0 0 3 0 | 3 0 1 . x . x . . | 4 | 0 2 2 | * * * 48 * | 0 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1 . . . x3o . | 3 | 0 0 3 | * * * * 32 | 0 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1 ------------+----+----------+---------------+-----------------+------------+------ x x4o . . . ♦ 8 | 4 8 0 | 4 0 2 0 0 | 4 * * * * * | 3 0 0 0 0 | 3 0 0 x x . x . . ♦ 8 | 4 4 4 | 2 2 0 2 0 | * 24 * * * * | 1 2 0 0 0 | 2 1 0 x . . x3o . ♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 16 * * * | 0 2 1 0 0 | 1 2 0 . x4o x . . ♦ 8 | 0 8 4 | 0 0 2 4 0 | * * * 12 * * | 1 0 0 2 0 | 2 0 1 . x . x3o . ♦ 6 | 0 3 6 | 0 0 0 3 2 | * * * * 32 * | 0 1 0 1 1 | 1 1 1 . . . x3o3o ♦ 4 | 0 0 6 | 0 0 0 0 4 | * * * * * 8 | 0 0 1 0 2 | 0 2 1 ------------+----+----------+---------------+-----------------+------------+------ x x4o x . . ♦ 16 | 8 16 8 | 8 4 4 8 0 | 2 4 0 2 0 0 | 6 * * * * | 2 0 0 x x . x3o . ♦ 12 | 6 6 12 | 3 6 0 6 4 | 0 3 2 0 2 0 | * 16 * * * | 1 1 0 x . . x3o3o ♦ 8 | 4 0 12 | 0 6 0 0 8 | 0 0 4 0 0 2 | * * 4 * * | 0 2 0 . x4o x3o . ♦ 12 | 0 12 12 | 0 0 3 12 4 | 0 0 0 3 4 0 | * * * 8 * | 1 0 1 . x . x3o3o ♦ 8 | 0 4 12 | 0 0 0 6 8 | 0 0 0 0 4 2 | * * * * 8 | 0 1 1 ------------+----+----------+---------------+-----------------+------------+------ x x4o x3o . ♦ 24 | 12 24 24 | 12 12 6 24 8 | 3 12 4 6 8 0 | 3 4 0 2 0 | 4 * * x x . x3o3o ♦ 16 | 8 8 24 | 4 12 0 12 16 | 0 6 8 0 8 4 | 0 4 2 0 2 | * 4 * . x4o x3o3o ♦ 16 | 0 16 24 | 0 0 4 24 16 | 0 0 0 6 16 4 | 0 0 0 4 4 | * * 2
x x x x3o3o . . . . . . | 32 | 1 1 1 3 | 1 1 3 1 3 3 3 | 1 3 3 3 3 3 3 1 | 3 3 3 1 3 1 1 | 3 1 1 1 ------------+----+-------------+-------------------+-----------------------+---------------+-------- x . . . . . | 2 | 16 * * * | 1 1 3 0 0 0 0 | 1 3 3 3 0 0 0 0 | 3 3 3 1 0 0 0 | 3 1 1 0 . x . . . . | 2 | * 16 * * | 1 0 0 1 3 0 0 | 1 3 0 0 3 3 0 0 | 3 3 0 0 3 1 0 | 3 1 0 1 . . x . . . | 2 | * * 16 * | 0 1 0 1 0 3 0 | 1 0 3 0 3 0 3 0 | 3 0 3 0 3 0 1 | 3 0 1 1 . . . x . . | 2 | * * * 48 | 0 0 1 0 1 1 2 | 0 1 1 2 1 2 2 1 | 1 2 2 1 2 1 1 | 2 1 1 1 ------------+----+-------------+-------------------+-----------------------+---------------+-------- x x . . . . | 4 | 2 2 0 0 | 8 * * * * * * | 1 3 0 0 0 0 0 0 | 3 3 0 0 0 0 0 | 3 1 0 0 x . x . . . | 4 | 2 0 2 0 | * 8 * * * * * | 1 0 3 0 0 0 0 0 | 3 0 3 0 0 0 0 | 3 0 1 0 x . . x . . | 4 | 2 0 0 2 | * * 24 * * * * | 0 1 1 2 0 0 0 0 | 1 2 2 1 0 0 0 | 2 1 1 0 . x x . . . | 4 | 0 2 2 0 | * * * 8 * * * | 1 0 0 0 3 0 0 0 | 3 0 0 0 3 0 0 | 3 0 0 1 . x . x . . | 4 | 0 2 0 2 | * * * * 24 * * | 0 1 0 0 1 2 0 0 | 1 2 0 0 2 1 0 | 2 1 0 1 . . x x . . | 4 | 0 0 2 2 | * * * * * 24 * | 0 0 1 0 1 0 2 0 | 1 0 2 0 2 0 1 | 2 0 1 1 . . . x3o . | 3 | 0 0 0 3 | * * * * * * 32 | 0 0 0 1 0 1 1 1 | 0 1 1 1 1 1 1 | 1 1 1 1 ------------+----+-------------+-------------------+-----------------------+---------------+-------- x x x . . . ♦ 8 | 4 4 4 0 | 2 2 0 2 0 0 0 | 4 * * * * * * * | 3 0 0 0 0 0 0 | 3 0 0 0 x x . x . . ♦ 8 | 4 4 0 4 | 2 0 2 0 2 0 0 | * 12 * * * * * * | 1 2 0 0 0 0 0 | 2 1 0 0 x . x x . . ♦ 8 | 4 0 4 4 | 0 2 2 0 0 2 0 | * * 12 * * * * * | 1 0 2 0 0 0 0 | 2 0 1 0 x . . x3o . ♦ 6 | 3 0 0 6 | 0 0 3 0 0 0 2 | * * * 16 * * * * | 0 1 1 1 0 0 0 | 1 1 1 0 . x x x . . ♦ 8 | 0 4 4 4 | 0 0 0 2 2 2 0 | * * * * 12 * * * | 1 0 0 0 2 0 0 | 2 0 0 1 . x . x3o . ♦ 6 | 0 3 0 6 | 0 0 0 0 3 0 2 | * * * * * 16 * * | 0 1 0 0 1 1 0 | 1 1 0 1 . . x x3o . ♦ 6 | 0 0 3 6 | 0 0 0 0 0 3 2 | * * * * * * 16 * | 0 0 1 0 1 0 1 | 1 0 1 1 . . . x3o3o ♦ 4 | 0 0 0 6 | 0 0 0 0 0 0 4 | * * * * * * * 8 | 0 0 0 1 0 1 1 | 0 1 1 1 ------------+----+-------------+-------------------+-----------------------+---------------+-------- x x x x . . ♦ 16 | 8 8 8 8 | 4 4 4 4 4 4 0 | 2 2 2 0 2 0 0 0 | 6 * * * * * * | 2 0 0 0 x x . x3o . ♦ 12 | 6 6 0 12 | 3 0 6 0 6 0 4 | 0 3 0 2 0 2 0 0 | * 8 * * * * * | 1 1 0 0 x . x x3o . ♦ 12 | 6 0 6 12 | 0 3 6 0 0 6 4 | 0 0 3 2 0 0 2 0 | * * 8 * * * * | 1 0 1 0 x . . x3o3o ♦ 8 | 4 0 0 12 | 0 0 6 0 0 0 8 | 0 0 0 4 0 0 0 2 | * * * 4 * * * | 0 1 1 0 . x x x3o . ♦ 12 | 0 6 6 12 | 0 0 0 3 6 6 4 | 0 0 0 0 3 2 2 0 | * * * * 8 * * | 1 0 0 1 . x . x3o3o ♦ 8 | 0 4 0 12 | 0 0 0 0 6 0 8 | 0 0 0 0 0 4 0 2 | * * * * * 4 * | 0 1 0 1 . . x x3o3o ♦ 8 | 0 0 4 12 | 0 0 0 0 0 6 8 | 0 0 0 0 0 0 4 2 | * * * * * * 4 | 0 0 1 1 ------------+----+-------------+-------------------+-----------------------+---------------+-------- x x x x3o . ♦ 24 | 12 12 12 24 | 6 6 12 6 12 12 8 | 3 6 6 4 6 4 4 0 | 3 2 2 0 2 0 0 | 4 * * * x x . x3o3o ♦ 16 | 8 8 0 24 | 4 0 12 0 12 0 16 | 0 6 0 8 0 8 0 4 | 0 4 0 2 0 2 0 | * 2 * * x . x x3o3o ♦ 16 | 8 0 8 24 | 0 4 12 0 0 12 16 | 0 0 6 8 0 0 8 4 | 0 0 4 2 0 0 2 | * * 2 * . x x x3o3o ♦ 16 | 0 8 8 24 | 0 0 0 4 12 12 16 | 0 0 0 0 6 8 8 4 | 0 0 0 0 4 2 2 | * * * 2
© 2004-2025 | top of page |