Acronym tho
Name tesseractihemioctachoron,
octahemioctachoron,
vertex figure of hehad
Cross sections
 ©
Circumradius 1/sqrt(2) = 0.707107
Inradius
wrt. tet
1/sqrt(8) = 0.353553
Inradius
wrt. oct
0
Coordinates
  • in orthoplex position:   (1/sqrt(2), 0, 0, 0)   & all permutations, all changes of sign
  • in hemitesseract position:   (1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8))   & all even permutations, all even changes of sign
  • in "the other" (mirrored) hemitesseract position:   (1/sqrt(8), 1/sqrt(8), 1/sqrt(8), -1/sqrt(8))   & all even permutations, all even changes of sign
Surface sqrt(8) = 2.828427
General of army hex
Colonel of regiment hex
Dihedral angles
(at margins)
  • at {3} between oct and tet:   60°
Face vector 8, 24, 32, 12
Confer
Grünbaumian relatives:
2tho   2tho+24{4}   ox3/2ox3xo&#x  
general polytopal classes:
segmentochora   non-orientable  
analogs:
demicross hOn  
External
links
hedrondude   polytopewiki   WikiChoron  

This polychoron could also be understood as a modwrap of octet.

Two of the below matrices are representing tho as ridge facetings of hex in the facet first orientation thereof. However, because tho reuses just alternate tets thereof, this one can be given in its (true) tet first or its pseudo cell first orientation. Note the differences of the layer participations of the in here remaining tets in those matrices.


Incidence matrix

  8   6 | 12 | 4 3
----+----+----+----
  2 | 24 |  4 | 2 2
----+----+----+----
  3 |  3 | 32 | 1 1
----+----+----+----
 4 |  6 |  4 | 8 *
 6 | 12 |  8 | * 4

(pseudo tet first orientation)

  4 * | 3  3 0 | 3  6  3 0 | 3 3 1
  * 4 | 0  3 3 | 0  3  6 3 | 1 3 3
------+--------+-----------+------
  2 0 | 6  * * | 2  2  0 0 | 2 2 0
  1 1 | * 12 * | 0  2  2 0 | 1 2 1
  0 2 | *  * 6 | 0  0  2 2 | 0 2 2
------+--------+-----------+------
  3 0 | 3  0 0 | 4  *  * * | 1 1 0
  2 1 | 1  2 0 | * 12  * * | 1 1 0
  1 2 | 0  2 1 | *  * 12 * | 0 1 1
  0 3 | 0  0 3 | *  *  * 4 | 0 1 1
------+--------+-----------+------
 3 1 | 3  3 0 | 1  3  0 0 | 4 * *
 3 3 | 3  6 3 | 1  3  3 1 | * 4 *
 1 3 | 0  3 3 | 0  0  3 1 | * * 4

(tet first orientation)
reduced( ox3/2ox3xo&#x, by base 2tet )

         o.3/2o.3o.                        | 4 * | 3  3 0 | 3  3  6 0 | 1 3 3 0
reduced( .o3/2.o3.o    )                   | * 4 | 0  3 3 | 0  6  3 3 | 0 3 3 1
-------------------------------------------+-----+--------+-----------+--------
         ..   .. x.                        | 2 0 | 6  * * | 2  0  2 0 | 1 1 2 0
reduced( oo3/2oo3oo&#x )                   | 1 1 | * 12 * | 0  2  2 0 | 0 2 2 0
reduced( .x   .. ..     &  ..   .x ..    ) | 0 2 | *  * 6 | 0  2  0 2 | 0 1 2 1
-------------------------------------------+-----+--------+-----------+--------
         ..   o.3x.                        | 3 0 | 3  0 0 | 4  *  * * | 1 0 1 0
reduced( ox   .. ..&#x  &  ..   ox ..&#x ) | 1 2 | 0  2 1 | * 12  * * | 0 1 1 0
         ..   .. xo&#x                     | 2 1 | 1  2 0 | *  * 12 * | 0 1 1 0
         ..   .x3.o                        | 0 3 | 0  0 3 | *  *  * 4 | 0 0 1 1
-------------------------------------------+-----+--------+-----------+--------
         o.3/2o.3x.                         4 0 | 6  0 0 | 4  0  0 0 | 1 * * *
         ox   .. xo&#x                      2 2 | 1  4 1 | 0  2  2 0 | * 6 * *
         ..   ox3xo&#x                      3 3 | 3  6 3 | 1  3  3 1 | * * 4 *
reduced( .x3/2.x3.o    )                    0 4 | 0  0 6 | 0  0  0 4 | * * * 1

© 2004-2024
top of page