Acronym rap (old: rip, alt.: tetaoct), tet || oct, K-4.5
Name rectified pentachoron,
pyrorectichoron,
tetrahedral cupola,
vertex figure of hin,
tetrahedron atop octahedron,
Gosset polytope 02,1
 
Segmentochoron display / VRML
 
Cross sections
 ©
Circumradius sqrt(3/5) = 0.774597
Inradius
wrt. tet
3/sqrt(40) = 0.474342
Inradius
wrt. oct
1/sqrt(10) = 0.316228
Vertex figure
 ©
Vertex layers
LayerSymmetrySubsymmetries
 o3o3o3o o3o3o . o3o . o o . o3o . o3o3o
1o3x3o3o o3x3o .
oct first
o3x . o
{3} first
o . o3o
vertex first
. x3o3o
tet first
2 x3o3o .
opposite tet
x3o . x x . x3o
vertex figure
. o3x3o
opposite oct
3   o3o . o
opposite vertex
o . o3x
opposite {3}
 
Lace city
in approx. ASCII-art
o3o   x3o   		-- tet
            
   x3o   o3x		-- oct
   x o   o x   		-- tet
               
               
o o   x x   o o		-- oct

   \     \     +-- {3}
    \     +------- gyro trip
     +------------ point
Lace hyper city
in approx. ASCII-art
 ©  
    
    
    
    
    
         
         
o       o
         
         
x o layer of tet
    o    
         
         
         
    o    
o x layer of tet
    
    
    
    
    
         
         
    o    
         
         
o o layer of oct
o       o
         
         
         
o       o
x x layer of oct
         
         
    o    
         
         
o o layer of oct
 ©  
         
         
    o    
         
         
point
  x      
         
        x
         
  x      
trip
      o  
         
o        
         
      o  
dual {3}
Volume 11 sqrt(5)/96 = 0.256216
Surface 25 sqrt(2)/12 = 2.946278
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: oct tet trip
rap 550
pinnip 5010
firp 0510
)
Dual o3m3o3o
Dihedral angles
  • at {3} between oct and tet:   arccos(-1/4) = 104.477512°
  • at {3} between oct and oct:   arccos(1/4) = 75.522488°
Face vector 10, 30, 30, 10
Confer
Grünbaumian relatives:
firp+rap+15{4}   2rap   2rap+20tet  
related segmentochora:
trippy   bidrap   traf   pafirp   fitetaoct   hotetahoct  
variations:
qo3oq3oo&#x  
blends:
turap   aurap  
ambification:
srip  
ambification pre-image:
pen  
general polytopal classes:
Wythoffian polychora   segmentochora   fundamental lace prisms   bistratic lace towers   lace simplices   Coxeter-Elte-Gosset polytopes  
analogs:
rectified simplex rSn   birectified simplex brSn   Gossetic n2,1   rectified Gossetic r(n2,1)   rectified Gossetic r(1n,2)  
External
links
hedrondude   wikipedia   polytopewiki   WikiChoron   quickfur
 ©    ©

A 4D representation of the Petersen graph can be obtained by the vertices and the diagonals of the octs of this polychoron, cf. the left picture on the right. Even though, the fact that 3 lines then do cross perpendicularily each, happens to be a matter of this representation only. Geometrically, the Petersen graph also is the graph formed by the vertices and edges of the hemi-dodecahedron (eldoe), that is, a dodecahedron where opposite points, lines and faces got identified.

The 10 vertices, and 10 of the triangle faces represent a self dual symmetric Desargues configuration, (103), cf. the rightmost picture. It has the full 120 automorphisms of the rectified 5-cell.


Incidence matrix according to Dynkin symbol

o3x3o3o

. . . . | 10   6 |  3  6 | 3 2
--------+----+----+-------+----
. x . . |  2 | 30 |  1  2 | 2 1
--------+----+----+-------+----
o3x . . |  3 |  3 | 10  * | 2 0
. x3o . |  3 |  3 |  * 20 | 1 1
--------+----+----+-------+----
o3x3o .   6 | 12 |  4  4 | 5 *
. x3o3o   4 |  6 |  0  4 | * 5

snubbed forms: o3β3o3o

o3x3o3/2o

. . .   . | 10   6 |  3  6 | 3 2
----------+----+----+-------+----
. x .   . |  2 | 30 |  1  2 | 2 1
----------+----+----+-------+----
o3x .   . |  3 |  3 | 10  * | 2 0
. x3o   . |  3 |  3 |  * 20 | 1 1
----------+----+----+-------+----
o3x3o   .   6 | 12 |  4  4 | 5 *
. x3o3/2o   4 |  6 |  0  4 | * 5

o3x3/2o3o

. .   . . | 10   6 |  3  6 | 3 2
----------+----+----+-------+----
. x   . . |  2 | 30 |  1  2 | 2 1
----------+----+----+-------+----
o3x   . . |  3 |  3 | 10  * | 2 0
. x3/2o . |  3 |  3 |  * 20 | 1 1
----------+----+----+-------+----
o3x3/2o .   6 | 12 |  4  4 | 5 *
. x3/2o3o   4 |  6 |  0  4 | * 5

o3x3/2o3/2o

. .   .   . | 10   6 |  3  6 | 3 2
------------+----+----+-------+----
. x   .   . |  2 | 30 |  1  2 | 2 1
------------+----+----+-------+----
o3x   .   . |  3 |  3 | 10  * | 2 0
. x3/2o   . |  3 |  3 |  * 20 | 1 1
------------+----+----+-------+----
o3x3/2o   .   6 | 12 |  4  4 | 5 *
. x3/2o3/2o   4 |  6 |  0  4 | * 5

o3/2x3o3o

.   . . . | 10   6 |  3  6 | 3 2
----------+----+----+-------+----
.   x . . |  2 | 30 |  1  2 | 2 1
----------+----+----+-------+----
o3/2x . . |  3 |  3 | 10  * | 2 0
.   x3o . |  3 |  3 |  * 20 | 1 1
----------+----+----+-------+----
o3/2x3o .   6 | 12 |  4  4 | 5 *
.   x3o3o   4 |  6 |  0  4 | * 5

o3/2x3o3/2o

.   . .   . | 10   6 |  3  6 | 3 2
------------+----+----+-------+----
.   x .   . |  2 | 30 |  1  2 | 2 1
------------+----+----+-------+----
o3/2x .   . |  3 |  3 | 10  * | 2 0
.   x3o   . |  3 |  3 |  * 20 | 1 1
------------+----+----+-------+----
o3/2x3o   .   6 | 12 |  4  4 | 5 *
.   x3o3/2o   4 |  6 |  0  4 | * 5

o3/2x3/2o3o

.   .   . . | 10   6 |  3  6 | 3 2
------------+----+----+-------+----
.   x   . . |  2 | 30 |  1  2 | 2 1
------------+----+----+-------+----
o3/2x   . . |  3 |  3 | 10  * | 2 0
.   x3/2o . |  3 |  3 |  * 20 | 1 1
------------+----+----+-------+----
o3/2x3/2o .   6 | 12 |  4  4 | 5 *
.   x3/2o3o   4 |  6 |  0  4 | * 5

o3/2x3/2o3/2o

.   .   .   . | 10   6 |  3  6 | 3 2
--------------+----+----+-------+----
.   x   .   . |  2 | 30 |  1  2 | 2 1
--------------+----+----+-------+----
o3/2x   .   . |  3 |  3 | 10  * | 2 0
.   x3/2o   . |  3 |  3 |  * 20 | 1 1
--------------+----+----+-------+----
o3/2x3/2o   .   6 | 12 |  4  4 | 5 *
.   x3/2o3/2o   4 |  6 |  0  4 | * 5

xo3ox3oo&#x   → height = sqrt(5/8) = 0.790569
(tet || oct)

o.3o.3o.    | 4 *  3  3  0 | 3 3  3 0 0 | 1 3 1 0
.o3.o3.o    | * 6  0  2  4 | 0 1  4 2 2 | 0 2 2 1
------------+-----+---------+------------+--------
x. .. ..    | 2 0 | 6  *  * | 2 1  0 0 0 | 1 2 0 0
oo3oo3oo&#x | 1 1 | * 12  * | 0 1  2 0 0 | 0 2 1 0
.. .x ..    | 0 2 | *  * 12 | 0 0  1 1 1 | 0 1 1 1
------------+-----+---------+------------+--------
x.3o. ..    | 3 0 | 3  0  0 | 4 *  * * * | 1 1 0 0
xo .. ..&#x | 2 1 | 1  2  0 | * 6  * * * | 0 2 0 0
.. ox ..&#x | 1 2 | 0  2  1 | * * 12 * * | 0 1 1 0
.o3.x ..    | 0 3 | 0  0  3 | * *  * 4 * | 0 1 0 1
.. .x3.o    | 0 3 | 0  0  3 | * *  * * 4 | 0 0 1 1
------------+-----+---------+------------+--------
x.3o.3o.     4 0 | 6  0  0 | 4 0  0 0 0 | 1 * * *
xo3ox ..&#x  3 3 | 3  6  3 | 1 3  3 1 0 | * 4 * *
.. ox3oo&#x  1 3 | 0  3  3 | 0 0  3 0 1 | * * 4 *
.o3.x3.o     0 6 | 0  0 12 | 0 0  0 4 4 | * * * 1

oxo oxo3oox&#xt   → both heights = sqrt(5/12) = 0.645497
(pt || pseudo trip || dual {3})

o.. o..3o..     | 1 * *  6 0 0  0 0 | 3 6 0 0 0 0 0 | 3 2 0 0
.o. .o.3.o.     | * 6 *  1 1 2  2 0 | 1 2 1 2 2 1 0 | 2 1 1 1
..o ..o3..o     | * * 3  0 0 0  4 2 | 0 0 0 2 2 4 1 | 1 0 2 2
----------------+-------+------------+---------------+--------
oo. oo.3oo.&#x  | 1 1 0 | 6 * *  * * | 1 2 0 0 0 0 0 | 2 1 0 0
.x. ... ...     | 0 2 0 | * 3 *  * * | 1 0 0 2 0 0 0 | 2 0 1 0
... .x. ...     | 0 2 0 | * * 6  * * | 0 1 1 0 1 0 0 | 1 1 0 1
.oo .oo3.oo&#x  | 0 1 1 | * * * 12 * | 0 0 0 1 1 1 0 | 1 0 1 1
... ... ..x     | 0 0 2 | * * *  * 3 | 0 0 0 0 0 2 1 | 0 0 1 2
----------------+-------+------------+---------------+--------
ox. ... ...&#x  | 1 2 0 | 2 1 0  0 0 | 3 * * * * * * | 2 0 0 0
... ox. ...&#x  | 1 2 0 | 2 0 1  0 0 | * 6 * * * * * | 1 1 0 0
... .x.3.o.     | 0 3 0 | 0 0 3  0 0 | * * 2 * * * * | 0 1 0 1
.xo ... ...&#x  | 0 2 1 | 0 1 0  2 0 | * * * 6 * * * | 1 0 1 0
... .xo ...&#x  | 0 2 1 | 0 0 1  2 0 | * * * * 6 * * | 1 0 0 1
... ... .ox&#x  | 0 1 2 | 0 0 0  2 1 | * * * * * 6 * | 0 0 1 1
... ..o3..x     | 0 0 3 | 0 0 0  0 3 | * * * * * * 1 | 0 0 0 2
----------------+-------+------------+---------------+--------
oxo oxo ...&#xt  1 4 1 | 4 2 2  4 0 | 2 2 0 2 2 0 0 | 3 * * *
... ox.3oo.&#x   1 3 0 | 3 0 3  0 0 | 0 3 1 0 0 0 0 | * 2 * *
.xo ... .ox&#x   0 2 2 | 0 1 0  4 1 | 0 0 0 2 0 2 0 | * * 3 *
... .xo3.ox&#x   0 3 3 | 0 0 3  6 3 | 0 0 1 0 3 3 1 | * * * 2

o(xx)(oo) o(xo)(ox)&#xt   → both heights = sqrt(5/12) = 0.645497
(pt || pseudo trip || dual {3})

o(..)(..) o(..)(..)     | 1 * * * *  4 2 0 0 0 0 0 0 0 0 0 | 2 2 4 1 0 0 0 0 0 0 0 0 0 | 1 2 2 0 0 0
.(o.)(..) .(o.)(..)     | * 4 * * *  1 0 1 1 1 1 1 0 0 0 0 | 1 1 1 0 1 1 1 1 1 1 0 0 0 | 1 1 1 1 1 0
.(.o)(..) .(.o)(..)     | * * 2 * *  0 1 0 0 2 0 0 1 2 0 0 | 0 0 2 1 1 2 0 0 0 0 2 1 0 | 0 2 1 1 0 1
.(..)(o.) .(..)(o.)     | * * * 1 *  0 0 0 0 0 4 0 0 0 2 0 | 0 0 0 0 0 0 2 2 4 0 0 0 1 | 1 0 0 2 2 0
.(..)(.o) .(..)(.o)     | * * * * 2  0 0 0 0 0 0 2 0 2 1 1 | 0 0 0 0 0 2 0 0 2 1 1 2 1 | 0 1 0 2 1 1
------------------------+-----------+-----------------------+---------------------------+------------
o(o.)(..) o(o.)(..)&#x  | 1 1 0 0 0 | 4 * * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0
o(.o)(..) o(.o)(..)&#x  | 1 0 1 0 0 | * 2 * * * * * * * * * | 0 0 2 1 0 0 0 0 0 0 0 0 0 | 0 2 1 0 0 0
.(x.)(..) .(..)(..)     | 0 2 0 0 0 | * * 2 * * * * * * * * | 1 0 0 0 0 0 1 0 0 1 0 0 0 | 1 1 0 0 1 0
.(..)(..) .(x.)(..)     | 0 2 0 0 0 | * * * 2 * * * * * * * | 0 1 0 0 1 0 0 1 0 0 0 0 0 | 1 0 1 1 0 0
.(oo)(..) .(oo)(..)&#x  | 0 1 1 0 0 | * * * * 4 * * * * * * | 0 0 1 0 1 1 0 0 0 0 0 0 0 | 0 1 1 1 0 0
.(o.)(o.) .(o.)(o.)&#x  | 0 1 0 1 0 | * * * * * 4 * * * * * | 0 0 0 0 0 0 1 1 1 0 0 0 0 | 1 0 0 1 1 0
.(o.)(.o) .(o.)(.o)&#x  | 0 1 0 0 1 | * * * * * * 4 * * * * | 0 0 0 0 0 1 0 0 1 1 0 0 0 | 0 1 0 1 1 0
.(.x)(..) .(..)(..)     | 0 0 2 0 0 | * * * * * * * 1 * * * | 0 0 0 1 0 0 0 0 0 0 2 0 0 | 0 2 0 0 0 1
.(.o)(.o) .(.o)(.o)&#x  | 0 0 1 0 1 | * * * * * * * * 4 * * | 0 0 0 0 0 1 0 0 0 0 1 1 0 | 0 1 0 1 0 1
.(..)(oo) .(..)(oo)&#x  | 0 0 0 1 1 | * * * * * * * * * 2 * | 0 0 0 0 0 0 0 0 2 0 0 0 1 | 0 0 0 2 1 0
.(..)(..) .(..)(.x)     | 0 0 0 0 2 | * * * * * * * * * * 1 | 0 0 0 0 0 0 0 0 0 0 0 2 1 | 0 0 0 2 0 1
------------------------+-----------+-----------------------+---------------------------+------------
o(x.)(..) .(..)(..)&#x  | 1 2 0 0 0 | 2 0 1 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * * * * | 1 1 0 0 0 0
.(..)(..) o(x.)(..)&#x  | 1 2 0 0 0 | 2 0 0 1 0 0 0 0 0 0 0 | * 2 * * * * * * * * * * * | 1 0 1 0 0 0
o(oo)(..) o(oo)(..)&#x  | 1 1 1 0 0 | 1 1 0 0 1 0 0 0 0 0 0 | * * 4 * * * * * * * * * * | 0 1 1 0 0 0
o(.x)(..) .(..)(..)&#x  | 1 0 2 0 0 | 0 2 0 0 0 0 0 1 0 0 0 | * * * 1 * * * * * * * * * | 0 2 0 0 0 0
.(..)(..) .(xo)(..)&#x  | 0 2 1 0 0 | 0 0 0 1 2 0 0 0 0 0 0 | * * * * 2 * * * * * * * * | 0 0 1 1 0 0
.(oo)(.o) .(oo)(.o)&#x  | 0 1 1 0 1 | 0 0 0 0 1 0 1 0 1 0 0 | * * * * * 4 * * * * * * * | 0 1 0 1 0 0
.(x.)(o.) .(..)(..)&#x  | 0 2 0 1 0 | 0 0 1 0 0 2 0 0 0 0 0 | * * * * * * 2 * * * * * * | 1 0 0 0 1 0
.(..)(..) .(x.)(o.)&#x  | 0 2 0 1 0 | 0 0 0 1 0 2 0 0 0 0 0 | * * * * * * * 2 * * * * * | 1 0 0 1 0 0
.(o.)(oo) .(o.)(oo)&#x  | 0 1 0 1 1 | 0 0 0 0 0 1 1 0 0 1 0 | * * * * * * * * 4 * * * * | 0 0 0 1 1 0
.(x.)(.o) .(..)(..)&#x  | 0 2 0 0 1 | 0 0 1 0 0 0 2 0 0 0 0 | * * * * * * * * * 2 * * * | 0 1 0 0 1 0
.(.x)(.o) .(..)(..)&#x  | 0 0 2 0 1 | 0 0 0 0 0 0 0 1 2 0 0 | * * * * * * * * * * 2 * * | 0 1 0 0 0 1
.(..)(..) .(.o)(.x)&#x  | 0 0 1 0 2 | 0 0 0 0 0 0 0 0 2 0 1 | * * * * * * * * * * * 2 * | 0 0 0 1 0 1
.(..)(..) .(..)(ox)&#x  | 0 0 0 1 2 | 0 0 0 0 0 0 0 0 0 2 1 | * * * * * * * * * * * * 1 | 0 0 0 2 0 0
------------------------+-----------+-----------------------+---------------------------+------------
o(x.)(o.) o(x.)(o.)&#xt  1 4 0 1 0 | 4 0 2 2 0 4 0 0 0 0 0 | 2 2 0 0 0 0 2 2 0 0 0 0 0 | 1 * * * * *
o(xx)(.o) .(..)(..)&#xt  1 2 2 0 1 | 2 2 1 0 2 0 2 1 2 0 0 | 1 0 2 1 0 2 0 0 0 1 1 0 0 | * 2 * * * *
.(..)(..) o(xo)(..)&#x   1 2 1 0 0 | 2 1 0 1 2 0 0 0 0 0 0 | 0 1 2 0 1 0 0 0 0 0 0 0 0 | * * 2 * * *
.(..)(..) .(xo)(ox)&#x   0 2 1 1 2 | 0 0 0 1 2 2 2 0 2 2 1 | 0 0 0 0 1 2 0 1 2 0 0 1 1 | * * * 2 * *
.(x.)(oo) .(..)(..)&#x   0 2 0 1 1 | 0 0 1 0 0 2 2 0 0 1 0 | 0 0 0 0 0 0 1 0 2 1 0 0 0 | * * * * 2 *
.(.x)(.o) .(.o)(.x)&#x   0 0 2 0 2 | 0 0 0 0 0 0 0 1 4 0 1 | 0 0 0 0 0 0 0 0 0 0 2 2 0 | * * * * * 1

oxoo3xoxo&#xr   → all heights = sqrt(2/3) = 0.816497
({3} || pseudo (dual {3} || pt) || {3})

o...3o...     | 3 * * *  2 2 1 1 0 0 0 0 | 1 1 2 2 2 1 0 0 0 0 0 | 1 1 1 2 0 0
.o..3.o..     | * 3 * *  0 2 0 0 2 2 0 0 | 0 2 1 0 2 0 1 2 1 0 0 | 1 0 2 1 1 0
..o.3..o.     | * * 3 *  0 0 1 0 0 2 2 1 | 0 0 0 0 2 1 0 1 2 1 2 | 0 0 1 2 1 1
...o3...o     | * * * 1  0 0 0 3 0 0 0 3 | 0 0 0 3 0 3 0 0 0 0 3 | 0 1 0 3 0 1
--------------+---------+-----------------+-----------------------+------------
.... x...     | 2 0 0 0 | 3 * * * * * * * | 1 0 1 1 0 0 0 0 0 0 0 | 1 1 0 1 0 0
oo..3oo..&#x  | 1 1 0 0 | * 6 * * * * * * | 0 1 1 0 1 0 0 0 0 0 0 | 1 0 1 1 0 0
o.o.3o.o.&#x  | 1 0 1 0 | * * 3 * * * * * | 0 0 0 0 2 1 0 0 0 0 0 | 0 0 1 2 0 0
o..o3o..o&#x  | 1 0 0 1 | * * * 3 * * * * | 0 0 0 2 0 1 0 0 0 0 0 | 0 1 0 2 0 0
.x.. ....     | 0 2 0 0 | * * * * 3 * * * | 0 1 0 0 0 0 1 1 0 0 0 | 1 0 1 0 1 0
.oo.3.oo.&#x  | 0 1 1 0 | * * * * * 6 * * | 0 0 0 0 1 0 0 1 1 0 0 | 0 0 1 1 1 0
.... ..x.     | 0 0 2 0 | * * * * * * 3 * | 0 0 0 0 0 0 0 0 1 1 1 | 0 0 0 1 1 1
..oo3..oo&#x  | 0 0 1 1 | * * * * * * * 3 | 0 0 0 0 0 1 0 0 0 0 2 | 0 0 0 2 0 1
--------------+---------+-----------------+-----------------------+------------
o...3x...     | 3 0 0 0 | 3 0 0 0 0 0 0 0 | 1 * * * * * * * * * * | 1 1 0 0 0 0
ox.. ....&#x  | 1 2 0 0 | 0 2 0 0 1 0 0 0 | * 3 * * * * * * * * * | 1 0 1 0 0 0
.... xo..&#x  | 2 1 0 0 | 1 2 0 0 0 0 0 0 | * * 3 * * * * * * * * | 1 0 0 1 0 0
.... x..o&#x  | 2 0 0 1 | 1 0 0 2 0 0 0 0 | * * * 3 * * * * * * * | 0 1 0 1 0 0
ooo.3ooo.&#x  | 1 1 1 0 | 0 1 1 0 0 1 0 0 | * * * * 6 * * * * * * | 0 0 1 1 0 0
o.oo3o.oo&#x  | 1 0 1 1 | 0 0 1 1 0 0 0 1 | * * * * * 3 * * * * * | 0 0 0 2 0 0
.x..3.o..     | 0 3 0 0 | 0 0 0 0 3 0 0 0 | * * * * * * 1 * * * * | 1 0 0 0 1 0
.xo. ....&#x  | 0 2 1 0 | 0 0 0 0 1 2 0 0 | * * * * * * * 3 * * * | 0 0 1 0 1 0
.... .ox.&#x  | 0 1 2 0 | 0 0 0 0 0 2 1 0 | * * * * * * * * 3 * * | 0 0 0 1 1 0
..o.3..x.     | 0 0 3 0 | 0 0 0 0 0 0 3 0 | * * * * * * * * * 1 * | 0 0 0 0 1 1
.... ..xo&#x  | 0 0 2 1 | 0 0 0 0 0 0 1 2 | * * * * * * * * * * 3 | 0 0 0 1 0 1
--------------+---------+-----------------+-----------------------+------------
ox..3xo..&#x   3 3 0 0 | 3 6 0 0 3 0 0 0 | 1 3 3 0 0 0 1 0 0 0 0 | 1 * * * * *
o..o3x..o&#x   3 0 0 1 | 3 0 0 3 0 0 0 0 | 1 0 0 3 0 0 0 0 0 0 0 | * 1 * * * *
oxo. ....&#x   1 2 1 0 | 0 2 1 0 1 2 0 0 | 0 1 0 0 2 0 0 1 0 0 0 | * * 3 * * *
.... xoxo&#xr  2 1 2 1 | 1 2 2 2 0 2 1 2 | 0 0 1 1 2 2 0 0 1 0 1 | * * * 3 * *
.xo.3.ox.&#x   0 3 3 0 | 0 0 0 0 3 6 3 0 | 0 0 0 0 0 0 1 3 3 1 0 | * * * * 1 *
..oo3..xo&#x   0 0 3 1 | 0 0 0 0 0 0 3 3 | 0 0 0 0 0 0 0 0 0 1 3 | * * * * * 1

oxoox oxoxo&#xr   → height(1,2) = height(2,3) = height(4,5) = 1/sqrt(2) = 0.707107
                    height(1,5) = height(3,4) = sqrt(3)/2 = 0.866025
(layer 1-3: oct-base, layer 4+5: tet-base)

o.... o....     | 1 * * * *  4 2 0 0 0 0 0 0 0 0 0 | 2 2 1 4 0 0 0 0 0 0 0 0 0 | 1 2 2 0 0 0
.o... .o...     | * 4 * * *  1 0 1 1 1 1 1 0 0 0 0 | 1 1 0 1 1 1 1 1 1 1 0 0 0 | 1 1 1 1 1 0
..o.. ..o..     | * * 1 * *  0 0 0 0 4 0 0 2 0 0 0 | 0 0 0 0 2 2 0 0 4 0 1 0 0 | 1 0 0 2 2 0
...o. ...o.     | * * * 2 *  0 0 0 0 0 2 0 1 1 2 0 | 0 0 0 0 0 0 1 0 2 2 1 1 2 | 0 1 0 1 2 1
....o ....o     | * * * * 2  0 1 0 0 0 0 2 0 0 2 1 | 0 0 1 2 0 0 0 1 0 2 0 2 1 | 0 2 1 0 1 1
----------------+-----------+-----------------------+---------------------------+------------
oo... oo...&#x  | 1 1 0 0 0 | 4 * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0
o...o o...o&#x  | 1 0 0 0 1 | * 2 * * * * * * * * * | 0 0 1 2 0 0 0 0 0 0 0 0 0 | 0 2 1 0 0 0
.x... .....     | 0 2 0 0 0 | * * 2 * * * * * * * * | 1 0 0 0 1 0 1 0 0 0 0 0 0 | 1 1 0 1 0 0
..... .x...     | 0 2 0 0 0 | * * * 2 * * * * * * * | 0 1 0 0 0 1 0 1 0 0 0 0 0 | 1 0 1 0 1 0
.oo.. .oo..&#x  | 0 1 1 0 0 | * * * * 4 * * * * * * | 0 0 0 0 1 1 0 0 1 0 0 0 0 | 1 0 0 1 1 0
.o.o. .o.o.&#x  | 0 1 0 1 0 | * * * * * 4 * * * * * | 0 0 0 0 0 0 1 0 1 1 0 0 0 | 0 1 0 1 1 0
.o..o .o..o&#x  | 0 1 0 0 1 | * * * * * * 4 * * * * | 0 0 0 1 0 0 0 1 0 1 0 0 0 | 0 1 1 0 1 0
..oo. ..oo.&#x  | 0 0 1 1 0 | * * * * * * * 2 * * * | 0 0 0 0 0 0 0 0 2 0 1 0 0 | 0 0 0 1 2 0
..... ...x.     | 0 0 0 2 0 | * * * * * * * * 1 * * | 0 0 0 0 0 0 0 0 0 0 1 0 2 | 0 0 0 0 2 1
...oo ...oo&#x  | 0 0 0 1 1 | * * * * * * * * * 4 * | 0 0 0 0 0 0 0 0 0 1 0 1 1 | 0 1 0 0 1 1
....x .....     | 0 0 0 0 2 | * * * * * * * * * * 1 | 0 0 1 0 0 0 0 0 0 0 0 2 0 | 0 2 0 0 0 1
----------------+-----------+-----------------------+---------------------------+------------
ox... .....&#x  | 1 2 0 0 0 | 2 0 1 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * * * * | 1 1 0 0 0 0
..... ox...&#x  | 1 2 0 0 0 | 2 0 0 1 0 0 0 0 0 0 0 | * 2 * * * * * * * * * * * | 1 0 1 0 0 0
o...x .....&#x  | 1 0 0 0 2 | 0 2 0 0 0 0 0 0 0 0 1 | * * 1 * * * * * * * * * * | 0 2 0 0 0 0
oo..o oo..o&#x  | 1 1 0 0 1 | 1 1 0 0 0 0 1 0 0 0 0 | * * * 4 * * * * * * * * * | 0 1 1 0 0 0
.xo.. .....&#x  | 0 2 1 0 0 | 0 0 1 0 2 0 0 0 0 0 0 | * * * * 2 * * * * * * * * | 1 0 0 1 0 0
..... .xo..&#x  | 0 2 1 0 0 | 0 0 0 1 2 0 0 0 0 0 0 | * * * * * 2 * * * * * * * | 1 0 0 0 1 0
.x.o. .....&#x  | 0 2 0 1 0 | 0 0 1 0 0 2 0 0 0 0 0 | * * * * * * 2 * * * * * * | 0 1 0 1 0 0
..... .x..o&#x  | 0 2 0 0 1 | 0 0 0 1 0 0 2 0 0 0 0 | * * * * * * * 2 * * * * * | 0 0 1 0 1 0
.ooo. .ooo.&#x  | 0 1 1 1 0 | 0 0 0 0 1 1 0 1 0 0 0 | * * * * * * * * 4 * * * * | 0 0 0 1 1 0
.o.oo .o.oo&#x  | 0 1 0 1 1 | 0 0 0 0 0 1 1 0 0 1 0 | * * * * * * * * * 4 * * * | 0 1 0 0 1 0
..... ..ox.&#x  | 0 0 1 2 0 | 0 0 0 0 0 0 0 2 1 0 0 | * * * * * * * * * * 1 * * | 0 0 0 0 2 0
...ox .....&#x  | 0 0 0 1 2 | 0 0 0 0 0 0 0 0 0 2 1 | * * * * * * * * * * * 2 * | 0 1 0 0 0 1
..... ...xo&#x  | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 1 2 0 | * * * * * * * * * * * * 2 | 0 0 0 0 1 1
----------------+-----------+-----------------------+---------------------------+------------
oxo.. oxo..&#xt  1 4 1 0 0 | 4 0 2 2 4 0 0 0 0 0 0 | 2 2 0 0 2 2 0 0 0 0 0 0 0 | 1 * * * * *
ox.ox .....&#xr  1 2 0 1 2 | 2 2 1 0 0 2 2 0 0 2 1 | 1 0 1 2 0 0 1 0 0 2 0 1 0 | * 2 * * * *
..... ox..o&#x   1 2 0 0 1 | 2 1 0 1 0 0 2 0 0 0 0 | 0 1 0 2 0 0 0 1 0 0 0 0 0 | * * 2 * * *
.xoo. .....&#x   0 2 1 1 0 | 0 0 1 0 2 2 0 1 0 0 0 | 0 0 0 0 1 0 1 0 2 0 0 0 0 | * * * 2 * *
..... .xoxo&#xr  0 2 1 2 1 | 0 0 0 1 2 2 2 2 1 2 0 | 0 0 0 0 0 1 0 1 2 2 1 0 1 | * * * * 2 *
...ox ...xo&#x   0 0 0 2 2 | 0 0 0 0 0 0 0 0 1 4 1 | 0 0 0 0 0 0 0 0 0 0 0 2 2 | * * * * * 1
or
o.... o....     & | 2 * *  4 2 0 0 0 0 | 2 2 1 4 0 0 0 | 1 2 2 0  A=C
.o... .o...       | * 4 *  2 0 2 2 0 0 | 2 2 0 2 2 1 0 | 1 2 2 0  B
...o. ...o.     & | * * 4  0 1 0 2 1 2 | 0 0 1 2 1 2 3 | 0 3 1 1  D=E
------------------+-------+-------------+---------------+--------
oo... oo...&#x  & | 1 1 0 | 8 * * * * * | 1 1 0 1 0 0 0 | 1 1 1 0
o...o o...o&#x  & | 1 0 1 | * 4 * * * * | 0 0 1 2 0 0 0 | 0 2 1 0
.x... .....     & | 0 2 0 | * * 4 * * * | 1 1 0 0 1 0 0 | 1 1 1 0
.o.o. .o.o.&#x  & | 0 1 1 | * * * 8 * * | 0 0 0 1 1 1 0 | 0 2 1 0
..... ...x.     & | 0 0 2 | * * * * 2 * | 0 0 1 0 0 0 2 | 0 2 0 1
...oo ...oo&#x    | 0 0 2 | * * * * * 4 | 0 0 0 0 0 1 2 | 0 2 0 1
------------------+-------+-------------+---------------+--------
ox... .....&#x  & | 1 2 0 | 2 0 1 0 0 0 | 4 * * * * * * | 1 1 0 0
..... ox...&#x  & | 1 2 0 | 2 0 1 0 0 0 | * 4 * * * * * | 1 0 1 0
o...x .....&#x  & | 1 0 2 | 0 2 0 0 1 0 | * * 2 * * * * | 0 2 0 0
oo..o oo..o&#x  & | 1 1 1 | 1 1 0 1 0 0 | * * * 8 * * * | 0 1 1 0
.x.o. .....&#x  & | 0 2 1 | 0 0 1 2 0 0 | * * * * 4 * * | 0 1 1 0
.o.oo .o.oo&#x    | 0 1 2 | 0 0 0 2 0 1 | * * * * * 4 * | 0 2 0 0
...ox .....&#x  & | 0 0 3 | 0 0 0 0 1 2 | * * * * * * 4 | 0 1 0 1
------------------+-------+-------------+---------------+--------
oxo.. oxo..&#xt    2 4 0 | 8 0 4 0 0 0 | 4 4 0 0 0 0 0 | 1 * * *
ox.ox .....&#xr &  1 2 3 | 2 2 1 4 1 2 | 1 0 1 2 1 2 1 | * 4 * *
..... ox..o&#x  &  1 2 1 | 2 1 1 2 0 0 | 0 1 0 2 1 0 0 | * * 4 *
...ox ...xo&#x     0 0 4 | 0 0 0 0 2 4 | 0 0 0 0 0 0 4 | * * * 1

© 2004-2025
top of page