Acronym ..., gaghi || gofix Name (degenerate) gaghi atop gofix,(degenerate) gaghi antiprism,(degenerate) gofix antiprism Circumradius ∞   i.e. flat in euclidean space Confer general polytopal classes: decomposition

It either can be thought of as a degenerate 5D segmentotope with zero height, or as a 4D euclidean decomposition of the larger base into smaller bits.

As abstract polytope gaghi || gofix is isomorphic to sishi || fix, thereby replacing pentagons by pentagrams, resp. gad by sissid, peppy by stappy, and gike by ike, resp. gaghi by sishi, gadpy by sissidpy, pesc by stasc, gikepy by ikepy, and gofix by fix.

Incidence matrix according to Dynkin symbol

```xo5oo5/2oo3ox&#x   → height = 0
(gaghi || gofix)

o.5o.5/2o.3o.    | 120   * |   20   12   0 |  30   60   30    0 |  12   60   60   20   0 | 1  12  30   20   1 0
.o5.o5/2.o3.o    |   * 120 ♦    0   12  12 |   0   30   60   30 |   0   12   60   60  12 | 0   1  12   30  12 1
-----------------+---------+---------------+--------------------+------------------------+---------------------
x. ..   .. ..    |   2   0 | 1200    *   * |   3    3    0    0 |   3    6    3    0   0 | 1   3   3    1   0 0
oo5oo5/2oo3oo&#x |   1   1 |    * 1440   * |   0    5    5    0 |   0    5   10    5   0 | 0   1   5    5   1 0
.. ..   .. .x    |   0   2 |    *    * 720 |   0    0    5    5 |   0    0    5   10   5 | 0   0   1    5   5 1
-----------------+---------+---------------+--------------------+------------------------+---------------------
x.5o.   .. ..    |   5   0 |    5    0   0 | 720    *    *    * |   2    2    0    0   0 | 1   2   1    0   0 0
xo ..   .. ..&#x |   2   1 |    1    2   0 |   * 3600    *    * |   0    2    2    0   0 | 0   1   2    1   0 0
.. ..   .. ox&#x |   1   2 |    0    2   1 |   *    * 3600    * |   0    0    2    2   0 | 0   0   1    2   1 0
.. ..   .o3.x    |   0   3 |    0    0   3 |   *    *    * 1200 |   0    0    0    2   2 | 0   0   0    1   2 1
-----------------+---------+---------------+--------------------+------------------------+---------------------
x.5o.5/2o. ..    ♦  12   0 |   30    0   0 |  12    0    0    0 | 120    *    *    *   * | 1   1   0    0   0 0
xo5oo   .. ..&#x ♦   5   1 |    5    5   0 |   1    5    0    0 |   * 1440    *    *   * | 0   1   1    0   0 0
xo ..   .. ox&#x ♦   2   2 |    1    4   1 |   0    2    2    0 |   *    * 3600    *   * | 0   0   1    1   0 0
.. ..   oo3ox&#x ♦   1   3 |    0    3   3 |   0    0    3    1 |   *    *    * 2400   * | 0   0   0    1   1 0
.. .o5/2.o3.x    ♦   0  12 |    0    0  30 |   0    0    0   20 |   *    *    *    * 120 | 0   0   0    0   1 1
-----------------+---------+---------------+--------------------+------------------------+---------------------
x.5o.5/2o.3o.    ♦ 120   0 | 1200    0   0 | 720    0    0    0 | 120    0    0    0   0 | 1   *   *    *   * *
xo5oo5/2oo ..&#x ♦  12   1 |   30   12   0 |  12   30    0    0 |   1   12    0    0   0 | * 120   *    *   * *
xo5oo   .. ox&#x ♦   5   2 |    5   10   1 |   1   10    5    0 |   0    2    5    0   0 | *   * 720    *   * *
xo ..   oo3ox&#x ♦   2   3 |    1    6   3 |   0    3    6    1 |   0    0    3    2   0 | *   *   * 1200   * *
.. oo5/2oo3ox&#x ♦   1  12 |    0   12  30 |   0    0   30   20 |   0    0    0   20   1 | *   *   *    * 120 *
.o5.o5/2.o3.x    ♦   0 120 |    0    0 720 |   0    0    0 1200 |   0    0    0    0 120 | *   *   *    *   * 1
```