| Acronym | gike |
| TOCID symbol | J, s*O, s*TT |
| Name |
great icosahedron, retrosnub tetrahedron, retrosnub tetratetrahedron, edgified penta-stellahedron, vertex figure of gax |
| VRML |
|
| Circumradius | sqrt[(5-sqrt(5))/8] = 0.587785 |
| Inradius | sqrt[(7-3 sqrt(5))/24] = 0.110264 |
| Density | 7 |
| Vertex figure | [35]/2 |
|
Lace city in approx. ASCII-art |
o o x v v x o o |
| Coordinates |
(1/2, v/2, 0) & even permutations, all changes of sign where v = (sqrt(5)-1)/2 |
| General of army | ike |
| Colonel of regiment | sissid |
| Dual | gissid |
| Dihedral angles |
|
| Face vector | 12, 30, 20 |
| Confer |
|
|
External links |
|
As abstract polytope gike is isomorphic to ike, thereby replacing vertex figure pentagrams by corresponding pentagons. – As such gike is a lieutenant.
This polyhedron is an edge-faceting of the small stellated dodecahedron (sissid).
Incidence matrix according to Dynkin symbol
o5/2o3x . . . | 12 | 5 | 5 --------+----+----+--- . . x | 2 | 30 | 2 --------+----+----+--- . o3x | 3 | 3 | 20 snubbed forms: o5/2o3β
o5/3o3x . . . | 12 | 5 | 5 --------+----+----+--- . . x | 2 | 30 | 2 --------+----+----+--- . o3x | 3 | 3 | 20
x3/2o5/2o . . . | 12 | 5 | 5 ----------+----+----+--- x . . | 2 | 30 | 2 ----------+----+----+--- x3/2o . | 3 | 3 | 20
x3/2o5/3o . . . | 12 | 5 | 5 ----------+----+----+--- x . . | 2 | 30 | 2 ----------+----+----+--- x3/2o . | 3 | 3 | 20
s3/2s3/2s
demi( . . . ) | 12 | 1 2 2 | 1 1 3
------------------+----+---------+-------
s 2 s | 2 | 6 * * | 0 0 2
sefa( s3/2s . ) | 2 | * 12 * | 1 0 1
sefa( . s3/2s ) | 2 | * * 12 | 0 1 1
------------------+----+---------+-------
s3/2s . ♦ 3 | 0 3 0 | 4 * *
. s3/2s ♦ 3 | 0 0 3 | * 4 *
sefa( s3/2s3/2s ) | 3 | 1 1 1 | * * 12
or
demi( . . . ) | 12 | 1 4 | 2 3
----------------------------------------+----+------+-----
s 2 s | 2 | 6 * | 0 2
sefa( s3/2s . ) & sefa( . s3/2s ) | 2 | * 24 | 1 1
----------------------------------------+----+------+-----
s3/2s . & . s3/2s ♦ 3 | 0 3 | 8 *
sefa( s3/2s3/2s ) | 3 | 1 2 | * 12
starting figure: x3/2x3/2x
s3/2s4o
demi( . . . ) | 12 | 1 4 | 2 3
----------------+----+------+-----
. s4o | 2 | 6 * | 0 2
sefa( s3/2s . ) | 2 | * 24 | 1 1
----------------+----+------+-----
s3/2s . ♦ 3 | 0 3 | 8 *
sefa( s3/2s4o ) | 3 | 1 2 | * 12
starting figure: x3/2x4o
s3/2s4/3o
demi( . . . ) | 12 | 1 4 | 2 3
------------------+----+------+-----
. s4/3o | 2 | 6 * | 0 2
sefa( s3/2s . ) | 2 | * 24 | 1 1
------------------+----+------+-----
s3/2s . ♦ 3 | 0 3 | 8 *
sefa( s3/2s4/3o ) | 3 | 1 2 | * 12
starting figure: x3/2x4/3o
© 2004-2025 | top of page |