Acronym oct (alt.: trap, tatet)
TOCID symbol O, TT, (3)Q
Name octahedron,
rectified tetrahedron,
tricross3),
tetratetrahedron,
aerochor(id),
trigonal antiprism,
snubbed triangular dihedron,
larger Delone cell of face-centered cubic (fcc) lattice,
equatorial cross-section of (vertex first) 1/q-tes,
vertex figure of hex,
Gosset polytope 01,1,
lattice C3 contact polytope (span of its small roots),
equatorial cross-section of vertex-first hex
 
 © ©    ©
Circumradius 1/sqrt(2) = 0.707107
Edge radius 1/2
Inradius 1/sqrt(6) = 0.408248
Vertex figure [34] = x4o
Snub derivation
Vertex layers
LayerSymmetrySubsymmetries
 o3o4oo3o .o . o. o4o
1x3o4ox3o .
{3} first
x . o
edge first
. o4o
vertex first
2o3x .
opposite {3}
o . q. x4o
vertex figure
3 x . o
opposite edge
. o4o
opposite vertex
 o3o3oo3o .o . o. o3o
1o3x3oo3x .
{3} first
o . o
vertex first
. x3o
{3} first
2x3o .
opposite {3}
x . x
vertex figure
. o3x
opposite {3}
3 o . o
opposite vertex
 
Lace city
in approx. ASCII-art
 ©
 x o
o x 
 ©
  o  
o q o
  o  
Lace hyper city
in approx. ASCII-art
 ©
    o    
         
        
o       o
         
         
o       o
        
         
    o    
Coordinates (1/sqrt(2), 0, 0)   & all permutations, all changes of sign
Volume sqrt(2)/3 = 0.471405
Surface 2 sqrt(3) = 3.464102
Rel. Roundness π sqrt(3)/9 = 60.459979 %
General of army (is itself convex)
Colonel of regiment (is itself locally convex – other uniform polyhedral member: thah – other edge facetings)
Dual cube
Dihedral angles
  • between {3} and {3}:   arccos(-1/3) = 109.471221°
Face vector 6, 12, 8
Confer
more general:
xPo3o...o3o4o  
general antiprisms:
n-ap   n/2-ap   n/d-ap  
special bipyramids:
m mNo  
variations:
qo3oq&#x   xo3ox&#q   xo3ox&#h   ho3oh&#q   squit  
Grünbaumian relatives:
oct+6{4}   2oct   2oct+6{4}   2oct+8{3}   2oct+12{4}   4oct  
uniform relative:
thah  
related Johnson solids:
squippy  
related scaliform:
bobipyr  
compounds:
se   sno   daso   dissit   si   gissi   addasi   dasi   oct+4gyro3py  
ambification:
co  
ambification pre-image:
tet  
complex polytopes:
Shephard's generalized oct  
general polytopal classes:
Wythoffian polyhedra   Catalan polyhedra   deltahedra   regular   noble polytopes   orthoplex   partial Stott expansions   segmentohedra   fundamental lace prisms   bistratic lace towers   lace simplices   Coxeter-Elte-Gosset polytopes   Hanner polytopes  
analogs:
rectified simplex rSn   mid-rectified simplex mrSn   regular orthoplex On   birectified hypercube brCn  
External
links
hedrondude   wikipedia   polytopewiki   WikiChoron   mathworld   Polyedergarten   quickfur

The number of ways to color the octahedron with different colors per face is 8!/24 = 1 680. – This is because the color group is the permutation group of 8 elements and has size 8!, while the order of the pure rotational octahedral group is 24. (The reflectional octahedral group would have twice as many, i.e. 48 elements.)

When considered as a trigonal antiprism s s3s (and scaled by h = sqrt(3)), then the prismatic compound with its mirrored copy will have for hull metrically exact the hip-variant q x3x. Stated the other way round, the mere alternating faceting of that variant results in this (scaled) regular shape.

The acronym oct is being used for the full symmetrical (octahedral) variant, trap refers to the trigonal antiprismatic subsymmetry, and tatet refers to the tetratetrahedron, i.e. its tetrahedral subsymmetry.

Being the dual of cube and considering that one's coordinates, it is apparent that this solid is nothing but a ball wrt. the norm |x|+|y|+|z|.

Somehow off-topic there are some neet number relations between the oct and the tet:


Incidence matrix according to Dynkin symbol

x3o4o

. . . | 6 |  4 | 4
------+---+----+--
x . . | 2 | 12 | 2
------+---+----+--
x3o . | 3 |  3 | 8

snubbed forms: β3o4o

x3/2o4o

.   . . | 6 |  4 | 4
--------+---+----+--
x   . . | 2 | 12 | 2
--------+---+----+--
x3/2o . | 3 |  3 | 8

snubbed forms: β3/2o4o

o4/3o3x

.   . . | 6 |  4 | 4
--------+---+----+--
.   . x | 2 | 12 | 2
--------+---+----+--
.   o3x | 3 |  3 | 8

snubbed forms: o4/3o3β

o4/3o3/2x

.   .   . | 6 |  4 | 4
----------+---+----+--
.   .   x | 2 | 12 | 2
----------+---+----+--
.   o3/2x | 3 |  3 | 8

snubbed forms: o4/3o3/2β

o3x3o

. . . | 6 |  4 | 2 2
------+---+----+----
. x . | 2 | 12 | 1 1
------+---+----+----
o3x . | 3 |  3 | 4 *
. x3o | 3 |  3 | * 4

snubbed forms: o3β3o

o3/2x3o

.   . . | 6 |  4 | 2 2
--------+---+----+----
.   x . | 2 | 12 | 1 1
--------+---+----+----
o3/2x . | 3 |  3 | 4 *
.   x3o | 3 |  3 | * 4

snubbed forms: o3/2β3o

o3/2x3/2o

.   .   . | 6 |  4 | 2 2
----------+---+----+----
.   x   . | 2 | 12 | 1 1
----------+---+----+----
o3/2x   . | 3 |  3 | 4 *
.   x3/2o | 3 |  3 | * 4

snubbed forms: o3/2β3/2o

s2s3s

demi( . . .  ) | 6 | 1 1 2 | 1 3
---------------+---+-------+----
      s2s .    | 2 | 3 * * | 0 2
      s . s2*a | 2 | * 3 * | 0 2
sefa( . s3s  ) | 2 | * * 6 | 1 1
---------------+---+-------+----
      . s3s     3 | 0 0 3 | 2 *
sefa( s2s3s  ) | 3 | 1 1 1 | * 6
or
demi( . . . )            | 6 | 2 2 | 1 3
-------------------------+---+-----+----
      s2s .  &  s . s2*a | 2 | 6 * | 0 2
sefa( . s3s )            | 2 | * 6 | 1 1
-------------------------+---+-----+----
      . s3s               3 | 0 3 | 2 *
sefa( s2s3s )            | 3 | 2 1 | * 6

starting figure: x x3x

s2s6o

demi( . . . ) | 6 | 2 2 | 1 3
--------------+---+-----+----
      s2s .   | 2 | 6 * | 0 2
sefa( . s6o ) | 2 | * 6 | 1 1
--------------+---+-----+----
      . s6o    3 | 0 3 | 2 *
sefa( s2s6o ) | 3 | 2 1 | * 6

starting figure: x x6o

xo3ox&#x   → height = sqrt(2/3) = 0.816497
({3} || dual {3})

o.3o.    | 3 * | 2 2 0 | 1 2 1 0
.o3.o    | * 3 | 0 2 2 | 0 1 2 1
---------+-----+-------+--------
x. ..    | 2 0 | 3 * * | 1 1 0 0
oo3oo&#x | 1 1 | * 6 * | 0 1 1 0
.. .x    | 0 2 | * * 3 | 0 0 1 1
---------+-----+-------+--------
x.3o.    | 3 0 | 3 0 0 | 1 * * *
xo ..&#x | 2 1 | 1 2 0 | * 3 * *
.. ox&#x | 1 2 | 0 2 1 | * * 3 *
.o3.x    | 0 3 | 0 0 3 | * * * 1

oxo4ooo&#xt   → both heights = 1/sqrt(2) = 0.707107
(pt || pseudo {4} || pt)

o..4o..    | 1 * * | 4 0 0 | 4 0
.o.4.o.    | * 4 * | 1 2 1 | 2 2
..o4..o    | * * 1 | 0 0 4 | 0 4
-----------+-------+-------+----
oo.4oo.&#x | 1 1 0 | 4 * * | 2 0
.x. ...    | 0 2 0 | * 4 * | 1 1
.oo4.oo&#x | 0 1 1 | * * 4 | 0 2
-----------+-------+-------+----
ox. ...&#x | 1 2 0 | 2 1 0 | 4 *
.xo ...&#x | 0 2 1 | 0 1 2 | * 4
or
o..4o..    & | 2 * | 4 0 | 4
.o.4.o.      | * 4 | 2 2 | 4
-------------+-----+-----+--
oo.4oo.&#x & | 1 1 | 8 * | 2
.x. ...      | 0 2 | * 4 | 2
-------------+-----+-----+--
ox. ...&#x & | 1 2 | 2 1 | 8

oxo oxo&#xt   → both heights = 1/sqrt(2) = 0.707107
(pt || pseudo {4} || pt)

o.. o..    | 1 * * | 4 0 0 0 | 2 2 0 0
.o. .o.    | * 4 * | 1 1 1 1 | 1 1 1 1
..o ..o    | * * 1 | 0 0 0 4 | 0 0 2 2
-----------+-------+---------+--------
oo. oo.&#x | 1 1 0 | 4 * * * | 1 1 0 0
.x. ...    | 0 2 0 | * 2 * * | 1 0 1 0
... .x.    | 0 2 0 | * * 2 * | 0 1 0 1
.oo .oo&#x | 0 1 1 | * * * 4 | 0 0 1 1
-----------+-------+---------+--------
ox. ...&#x | 1 2 0 | 2 1 0 0 | 2 * * *
... ox.&#x | 1 2 0 | 2 0 1 0 | * 2 * *
.xo ...&#x | 0 2 1 | 0 1 0 2 | * * 2 *
... .xo&#x | 0 2 1 | 0 0 1 2 | * * * 2
or
o.. o..    & | 2 * | 4 0 0 | 2 2
.o. .o.      | * 4 | 2 1 1 | 2 2
-------------+-----+-------+----
oo. oo.&#x & | 1 1 | 8 * * | 1 1
.x. ...      | 0 2 | * 2 * | 2 0
... .x.      | 0 2 | * * 2 | 0 2
-------------+-----+-------+----
ox. ...&#x & | 1 2 | 2 1 0 | 4 *
... ox.&#x & | 1 2 | 2 0 1 | * 4

xox oqo&#xt   → both heights = 1/2
(line || perp pseudo q-line || line)

o.. o..     | 2 * * | 1 2 1 0 0 | 2 2 0
.o. .o.     | * 2 * | 0 2 0 2 0 | 1 2 1
..o ..o     | * * 2 | 0 0 1 2 1 | 0 2 2
------------+-------+-----------+------
x.. ...     | 2 0 0 | 1 * * * * | 2 0 0
oo. oo.&#x  | 1 1 0 | * 4 * * * | 1 1 0
o.o o.o&#x  | 1 0 1 | * * 2 * * | 0 2 0
.oo .oo&#x  | 0 1 1 | * * * 4 * | 0 1 1
..x ...     | 0 0 2 | * * * * 1 | 0 0 2
------------+-------+-----------+------
xo. ...&#x  | 2 1 0 | 1 2 0 0 0 | 2 * *
ooo ooo&#xt | 1 1 1 | 0 1 1 1 0 | * 4 *
.ox ...&#x  | 0 1 2 | 0 0 0 2 1 | * * 2
or
o.. o..     & | 4 * | 1 2 1 | 2 2
.o. .o.       | * 2 | 0 4 0 | 2 2
--------------+-----+-------+----
x.. ...     & | 2 0 | 2 * * | 2 0
oo. oo.&#x  & | 1 1 | * 8 * | 1 1
o.o o.o&#x    | 2 0 | * * 2 | 0 2
--------------+-----+-------+----
xo. ...&#x  & | 2 1 | 1 2 0 | 4 *
ooo ooo&#xt   | 2 1 | 0 2 1 | * 4

oxox&#xr   → all cyclical heights = sqrt(3)/2 = 0.866025
             in fact this lace simplex degenerates into a rhomb with diagonals:
             height(1,3) = sqrt(2) = 1.414214
             height(2,4) = 1

o...    | 1 * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 0
.o..    | * 2 * * | 1 0 1 1 1 0 0 | 1 1 0 1 1 0
..o.    | * * 1 * | 0 0 0 2 0 2 0 | 0 0 0 1 2 1
...o    | * * * 2 | 0 1 0 0 1 1 1 | 0 1 1 0 1 1
--------+---------+---------------+------------
oo..&#x | 1 1 0 0 | 2 * * * * * * | 1 1 0 0 0 0
o..o&#x | 1 0 0 1 | * 2 * * * * * | 0 1 1 0 0 0
.x..    | 0 2 0 0 | * * 1 * * * * | 1 0 0 1 0 0
.oo.&#x | 0 1 1 0 | * * * 2 * * * | 0 0 0 1 1 0
.o.o&#x | 0 1 0 1 | * * * * 2 * * | 0 1 0 0 1 0
..oo&#x | 0 0 1 1 | * * * * * 2 * | 0 0 0 0 1 1
...x    | 0 0 0 2 | * * * * * * 1 | 0 0 1 0 0 1
--------+---------+---------------+------------
ox..&#x | 1 2 0 0 | 2 0 1 0 0 0 0 | 1 * * * * *
oo.o&#x | 1 1 0 1 | 1 1 0 0 1 0 0 | * 2 * * * *
o..x&#x | 1 0 0 2 | 0 2 0 0 0 0 1 | * * 1 * * *
.xo.&#x | 0 2 1 0 | 0 0 1 2 0 0 0 | * * * 1 * *
.ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 0 | * * * * 2 *
..ox&#x | 0 0 1 2 | 0 0 0 0 0 2 1 | * * * * * 1

qo ox4oo&#zx   → height = 0
(tegum sum of q-line and perp {4})
(tegum product of q-line with {4})

o. o.4o.    | 2 * | 4 0 | 4
.o .o4.o    | * 4 | 2 2 | 4
------------+-----+-----+--
oo oo4oo&#x | 1 1 | 8 * | 2
.. .x ..    | 0 2 | * 4 | 2
------------+-----+-----+--
.. ox ..&#x | 1 2 | 2 1 | 8

qo ox ox&#zx   → height = 0
(tegum sum of q-line and perp {4})
(tegum product of q-line with {4})

o. o. o.    | 2 * | 4 0 0 | 2 2
.o .o .o    | * 4 | 2 1 1 | 2 2
------------+-----+-------+----
oo oo oo&#x | 1 1 | 8 * * | 1 1
.. .x ..    | 0 2 | * 2 * | 2 0
.. .. .x    | 0 2 | * * 2 | 0 2
------------+-----+-------+----
.. ox ..&#x | 1 2 | 2 1 0 | 4 *
.. .. ox&#x | 1 2 | 2 0 1 | * 4

qoo oqo ooq&#zx   → all heights = 0
(tegum sum of 3 perp q-lines)
(tegum product of 3 q-lines)

o.. o.. o..    | 2 * * | 2 2 0 | 4
.o. .o. .o.    | * 2 * | 2 0 2 | 4
..o ..o ..o    | * * 2 | 0 2 2 | 4
---------------+-------+-------+--
oo. oo. oo.&#x | 1 1 0 | 4 * * | 2
o.o o.o o.o&#x | 1 0 1 | * 4 * | 2
.oo .oo .oo&#x | 0 1 1 | * * 4 | 2
---------------+-------+-------+--
ooo ooo ooo&#x | 1 1 1 | 1 1 1 | 8

oooooo&#xr   → all consecutive pairwise heights = all alternating pairwise heights = 1
               Note: these lengths show that this cycle is not flat, rather it is wobbling up and down!

o.....     & | 6 | 2 2 | 3 1
-------------+---+-----+----
oo....&#x  & | 2 | 6 * | 2 0
o.o...&#x  & | 2 | * 6 | 1 1
-------------+---+-----+----
ooo...&#x  & | 3 | 2 1 | 6 *
o.o.o.&#x  & | 3 | 0 3 | * 2

oxxo&#xt   → height(1,2) = height(3,4) = 1/sqrt(12) = 0.288675
             height(2,3) = 1/sqrt(3) = 0.577350
             Note: these lengths show that this tower is not flat, rather it has additional leporello folds!

o...     & | 2 * | 2 2 0 0 | 1 1 2
.o..     & | * 4 | 1 1 1 1 | 1 1 2
-----------+-----+---------+------
oo..&#x  & | 1 1 | 4 * * * | 1 0 1
o.o.&#x  & | 1 1 | * 4 * * | 0 1 1
.x..     & | 0 2 | * * 2 * | 1 1 0
.oo.&#x    | 0 2 | * * * 2 | 0 0 2
-----------+-----+---------+------
ox..&#x  & | 1 2 | 2 0 1 0 | 2 * *
o.x.&#x  & | 1 2 | 0 2 1 0 | * 2 *
ooo.&#x  & | 1 2 | 1 1 0 1 | * * 4

© 2004-2024
top of page