Acronym | quidex |
Name |
quatro-icositetradiminished hexacosachoron, tristellatododecahedral enneacontahexachoron, dual of sadi |
Vertex figures | tet, doe |
Dual | sadi |
Face vector | 144, 480, 432, 96 |
Confer |
|
External links |
This one can be obtained by chopping off the 96 vertices of an ex, which correspond to 4 vertex-inscribed f-icoes. In fact 96 ikepies are to be cut off. But in contrast to sadi those ikepy would intersect here, resulting in titdi cells instead, which also show up some f-sized edges. – Quidex likewise can be obtained from sadi by chopping off the 72 vertices of 3 further vertex-inscribed f-icoes, or from bidex by diminishing at those of 2 such, resp. from those of tridex by diminishing at those of 1 such. Conversely it also can be considered as a subdimensional stellation of hi by apiculating 24 of the does within icoic positioning with pyramids of according heights. – For more details cf. here.
Incidence matrix according to Dynkin symbol
ooV|xoF|o-3-ooo|ooo|F-3-Voo|Fxo|o *b3-oVo|oFx|o-&#z(v,f,F) → existing heights=0 V = 2f = 3.236068 F = ff = 2.618034 o.. ... .-3-o.. ... .-3-o.. ... . *b3-o.. ... . | 8 * * * * * * ♦ 4 0 0 0 0 0 0 | 6 0 0 0 0 0 | 4 0 0 .o. ... .-3-.o. ... .-3-.o. ... . *b3-.o. ... . | * 8 * * * * * ♦ 0 4 0 0 0 0 0 | 0 6 0 0 0 0 | 0 4 0 ..o ... .-3-..o ... .-3-..o ... . *b3-..o ... . | * * 8 * * * * ♦ 0 0 4 0 0 0 0 | 0 0 6 0 0 0 | 0 0 4 ... o.. .-3-... o.. .-3-... o.. . *b3-... o.. . | * * * 32 * * * ♦ 1 0 0 3 0 0 0 | 3 0 0 3 0 0 | 3 0 1 ... .o. .-3-... .o. .-3-... .o. . *b3-... .o. . | * * * * 32 * * ♦ 0 1 0 0 3 0 0 | 0 3 0 0 3 0 | 1 3 0 ... ..o .-3-... ..o .-3-... ..o . *b3-... ..o . | * * * * * 32 * ♦ 0 0 1 0 0 3 0 | 0 0 3 0 0 3 | 0 1 3 ... ... o-3-... ... o-3-... ... o *b3-... ... o | * * * * * * 24 ♦ 0 0 0 4 4 4 8 | 2 2 2 8 8 8 | 4 4 4 -----------------------------------------------------------+-------------------+----------------------+-------------------+--------- o.. o.. .-3-o.. o.. .-3-o.. o.. . *b3-o.. o.. .-&#v | 1 0 0 1 0 0 0 | 32 * * * * * * | 3 0 0 0 0 0 | 3 0 0 v-edges .o. .o. .-3-.o. .o. .-3-.o. .o. . *b3-.o. .o. .-&#v | 0 1 0 0 1 0 0 | * 32 * * * * * | 0 3 0 0 0 0 | 0 3 0 v-edges ..o ..o .-3-..o ..o .-3-..o ..o . *b3-..o ..o .-&#v | 0 0 1 0 0 1 0 | * * 32 * * * * | 0 0 3 0 0 0 | 0 0 3 v-edges ... o.. o-3-... o.. o-3-... o.. o *b3-... o.. o-&#f | 0 0 0 1 0 0 1 | * * * 96 * * * | 1 0 0 2 0 0 | 2 0 1 f-edges ... .o. o-3-... .o. o-3-... .o. o *b3-... .o. o-&#f | 0 0 0 0 1 0 1 | * * * * 96 * * | 0 1 0 0 2 0 | 1 2 0 f-edges ... ..o o-3-... ..o o-3-... ..o o *b3-... ..o o-&#f | 0 0 0 0 0 1 1 | * * * * * 96 * | 0 0 1 0 0 2 | 0 1 2 f-edges ... ... . ... ... F ... ... . ... ... . | 0 0 0 0 0 0 2 | * * * * * * 96 | 0 0 0 1 1 1 | 1 1 1 F-edges -----------------------------------------------------------+-------------------+----------------------+-------------------+--------- o.. x.. o ... ... . ... ... . ... ... .-&#(v,f)t | 1 0 0 2 0 0 1 | 2 0 0 2 0 0 0 | 48 * * * * * | 2 0 0 kite ... ... . ... ... . .o. .x. o ... ... .-&#(v,f)t | 0 1 0 0 2 0 1 | 0 2 0 0 2 0 0 | * 48 * * * * | 0 2 0 kite ... ... . ... ... . ... ... . ..o ..x o-&#(v,f)t | 0 0 1 0 0 2 1 | 0 0 2 0 0 2 0 | * * 48 * * * | 0 0 2 kite ... ... . ... o.. F ... ... . ... ... .-&#f | 0 0 0 1 0 0 2 | 0 0 0 2 0 0 1 | * * * 96 * * | 1 0 1 golden triangle ... ... . ... .o. F ... ... . ... ... .-&#f | 0 0 0 0 1 0 2 | 0 0 0 0 2 0 1 | * * * * 96 * | 1 1 0 golden triangle ... ... . ... ..o F ... ... . ... ... .-&#f | 0 0 0 0 0 1 2 | 0 0 0 0 0 2 1 | * * * * * 96 | 0 1 1 golden triangle -----------------------------------------------------------+-------------------+----------------------+-------------------+--------- o.. xo. o-3-o.. oo. F ... ... . ... ... .-&#(v,f,f)t ♦ 1 0 0 3 1 0 3 | 3 0 0 6 3 0 3 | 3 0 0 3 3 0 | 32 * * tower a-d-g-e ... ... . .o. .oo F-3-.o. .xo o ... ... .-&#(v,f,f)t ♦ 0 1 0 0 3 1 3 | 0 3 0 0 6 3 3 | 0 3 0 0 3 3 | * 32 * tower b-e-g-f ... ... . ..o o.o F ... ... . *b3-..o o.x o-&#(v,f,f)t ♦ 0 0 1 1 0 3 3 | 0 0 3 3 0 6 3 | 0 0 3 3 0 3 | * * 32 tower c-f-g-d
or o.. ... .-3-o.. ... .-3-o.. ... . *b3-o.. ... . & | 24 * * ♦ 4 0 0 | 6 0 | 4 ... o.. .-3-... o.. .-3-... o.. . *b3-... o.. . & | * 96 * ♦ 1 3 0 | 3 3 | 4 ... ... o-3-... ... o-3-... ... o *b3-... ... o | * * 24 ♦ 0 12 8 | 6 24 | 12 -------------------------------------------------------------+----------+-----------+---------+--- o.. o.. .-3-o.. o.. .-3-o.. o.. . *b3-o.. o.. .-&#v & | 1 1 0 | 96 * * | 3 0 | 3 v-edges ... o.. o-3-... o.. o-3-... o.. o *b3-... o.. o-&#f & | 0 1 1 | * 288 * | 1 2 | 3 f-edges ... ... . ... ... F ... ... . ... ... . | 0 0 2 | * * 96 | 0 3 | 3 F-edges -------------------------------------------------------------+----------+-----------+---------+--- o.. x.. o ... ... . ... ... . ... ... .-&#(v,f)t & | 1 2 1 | 2 2 0 | 144 * | 2 kite ... ... . ... o.. F ... ... . ... ... .-&#f & | 0 1 2 | 0 2 1 | * 288 | 2 golden triangle -------------------------------------------------------------+----------+-----------+---------+--- o.. xo. o-3-o.. oo. F ... ... . ... ... .-&#(v,f,f)t & ♦ 1 4 3 | 3 9 3 | 3 6 | 96
© 2004-2024 | top of page |