Acronym | cyted srit |
Name |
cyclotetradiminished small rhombitesseract, cyclotetraugmented octagonal duoprism |
Circumradius | sqrt[2+sqrt(2)] = 1.847759 |
Dihedral angles |
|
Pattern (parts of total size: 8x8 squares) |
A---3---A---4---A---3---A---4---A-... | \ : / | | \ : / | | 1 B 1 1 B 1 1 | / : \ | | / : \ | | A---3---A---4---A---3---A---4---A-... | : | | : | | 2 : 2 2 : 2 2 | : | | : | | A---3---A---4---A---3---A---4---A-... | \ : / | | \ : / | | 1 B 1 1 B 1 1 | / : \ | | / : \ | | A---3---A---4---A---3---A---4---A-... | : | | : | | 2 : 2 2 : 2 2 | : | | : | | A---3---A---4---A---3---A---4---A-... | \ : / | | \ : / | | |
Face vector | 80, 208, 172, 44 |
Confer |
|
The symmetry of srit will be broken by an inscribed odip. Here the squares of odip are used for separation: in one of these halves the corresponding srit remainder will be placed (octs thereby will be halved into squippy), while in the other half one ring of 8 ops from odip is to be placed.
This polychoron can be either obtained by diminishing a cyclic ring of 4 sirco-sirco squares, or by augmenting alternate ops of one ring of ops within odip by {4} || op.
Incidence matrix according to Dynkin symbol
ox4wx ox4xx&#zx o.4o. o.4o. | 16 * | 2 4 0 0 0 0 | 1 2 2 4 0 0 0 0 0 | 1 2 2 0 0 vertices of B-squares .o4.o .o4.o | * 64 | 0 1 1 1 1 1 | 0 1 1 1 1 1 1 1 1 | 1 1 1 1 1 odip vertices (A) ----------------+-------+-------------------+--------------------------+------------ .. .. .. x. | 2 0 | 16 * * * * * | 1 0 0 2 0 0 0 0 0 | 0 1 2 0 0 (:) oo4oo oo4oo&#x | 1 1 | * 64 * * * * | 0 1 1 1 0 0 0 0 0 | 1 1 1 0 0 (/,\) .x .. .. .. | 0 2 | * * 32 * * * | 0 1 0 0 1 1 1 0 0 | 1 1 0 1 1 (3) .. .x .. .. | 0 2 | * * * 32 * * | 0 0 0 0 1 0 0 1 1 | 0 0 1 1 1 (4) .. .. .x .. | 0 2 | * * * * 32 * | 0 0 1 0 0 1 0 1 0 | 1 0 1 1 0 (1) .. .. .. .x | 0 2 | * * * * * 32 | 0 0 0 1 0 0 1 0 1 | 0 1 1 0 1 (2) ----------------+-------+-------------------+--------------------------+------------ .. .. o.4x. | 4 0 | 4 0 0 0 0 0 | 4 * * * * * * * * | 0 0 2 0 0 B-squares ox .. .. ..&#x | 1 2 | 0 2 1 0 0 0 | * 32 * * * * * * * | 1 1 0 0 0 .. .. ox ..&#x | 1 2 | 0 2 0 0 1 0 | * * 32 * * * * * * | 1 0 1 0 0 .. .. .. xx&#x | 2 2 | 1 2 0 0 0 1 | * * * 32 * * * * * | 0 1 1 0 0 .x4.x .. .. | 0 8 | 0 0 4 4 0 0 | * * * * 8 * * * * | 0 0 0 1 1 .x .. .x .. | 0 4 | 0 0 2 0 2 0 | * * * * * 16 * * * | 1 0 0 1 0 .x .. .. .x | 0 4 | 0 0 2 0 0 2 | * * * * * * 16 * * | 0 1 0 0 1 .. .x .x .. | 0 4 | 0 0 0 2 2 0 | * * * * * * * 16 * | 0 0 1 1 0 .. .x .. .x | 0 4 | 0 0 0 2 0 2 | * * * * * * * * 16 | 0 0 1 0 1 ----------------+-------+-------------------+--------------------------+------------ ox .. ox ..&#x ♦ 1 4 | 0 4 2 0 2 0 | 0 2 2 0 0 1 0 0 0 | 16 * * * * ox .. .. xx&#x ♦ 2 4 | 1 4 2 0 0 2 | 0 2 0 2 0 0 1 0 0 | * 16 * * * .. wx ox4xx&#zx ♦ 8 16 | 8 16 0 8 8 8 | 2 0 8 8 0 0 0 4 4 | * * 4 * * .x4.x .x .. ♦ 0 16 | 0 0 8 8 8 0 | 0 0 0 0 2 4 0 4 0 | * * * 4 * .x4.x .. .x ♦ 0 16 | 0 0 8 8 0 8 | 0 0 0 0 2 0 4 0 4 | * * * * 4
© 2004-2024 | top of page |