Acronym ikadoaid
Name (1,0,0,12,0)-diminished vertex-first-rotunda of ex,
trideca-diminished vertex-first rotunda of hexacosachoron,
ike atop (pseudo) doe atop id
Circumradius (1+sqrt(5))/2 = 1.618034
Lace city
in approx. ASCII-art
                   o5x
                      
       x5o            
o5o                   
                   f5o
                      
                      
o5x                   
       f5o            
                      
                   x5x
                      
       o5f            
x5o                   
                      
                      
                   o5f
o5o                   
       o5x            
                      
                   x5o
        x3o   o3f f3o   o3x        
                                   
                                   
 o3o o3f   f3x       x3f   f3o o3o 
                                   
                                       (F=ff)
                                   
                                   
o3x   x3f F3o   f3f   o3F f3x   x3o
Dihedral angles
  • at {3} between tet and tet:   arccos[-(1+3 sqrt(5))/8] = 164.477512°
  • at {3} between gyepip and tet:   arccos[-sqrt(5/8)] = 142.238756°
  • at {3} between ike and tet:   arccos[-sqrt(5/8)] = 142.238756°
  • at {3} between gyepip and gyepip:   120°
  • at {3} between tet and id:   arccos[(3-sqrt(5))/sqrt(32)] = 82.238756°
  • at {5} between gyepip and id:   72°
Confer
uniform relative:
ex  
segmentochora:
ike || doe   doe || id  
other CRFs:
rotunda of ex   id || f-ike || ike   pt || ike || doe || id   ike || tet-dim-doe || id   ike || cube-dim-doe || id  
general polytopal classes:
bistratic lace towers  

Incidence matrix according to Dynkin symbol

xoo3oox5oxo&#xt   → height(1,2) = 1/2
                    height(2,3) = (1+sqrt(5))/4 = 0.809017
(ike || pseudo doe || id)

o..3o..5o..     | 12  *  *   5  5  0  0  0 |  5 10  5  0  0  0  0 | 1  5  5  1  0 0
.o.3.o.5.o.     |  * 20  *   0  3  3  3  0 |  0  3  6  3  3  0  0 | 0  1  3  3  1 0
..o3..o5..o     |  *  * 30 |  0  0  0  2  4 |  0  0  0  4  1  2  2 | 0  0  0  2  2 1
----------------+----------+----------------+----------------------+----------------
x.. ... ...     |  2  0  0 | 30  *  *  *  * |  2  2  0  0  0  0  0 | 1  2  1  0  0 0
oo.3oo.5oo.&#x  |  1  1  0 |  * 60  *  *  * |  0  2  2  0  0  0  0 | 0  1  2  1  0 0
... ... .x.     |  0  2  0 |  *  * 30  *  * |  0  0  2  0  1  0  0 | 0  0  1  2  0 0
.oo3.oo5.oo&#x  |  0  1  1 |  *  *  * 60  * |  0  0  0  2  1  0  0 | 0  0  0  2  1 0
... ..x ...     |  0  0  2 |  *  *  *  * 60 |  0  0  0  1  0  1  1 | 0  0  0  1  1 1
----------------+----------+----------------+----------------------+----------------
x..3o.. ...     |  3  0  0 |  3  0  0  0  0 | 20  *  *  *  *  *  * | 1  1  0  0  0 0
xo. ... ...&#x  |  2  1  0 |  1  2  0  0  0 |  * 60  *  *  *  *  * | 0  1  1  0  0 0
... ... ox.&#x  |  1  2  0 |  0  2  1  0  0 |  *  * 60  *  *  *  * | 0  0  1  1  0 0
... .ox ...&#x  |  0  1  2 |  0  0  0  2  1 |  *  *  * 60  *  *  * | 0  0  0  1  1 0
... ... .xo&#x  |  0  2  1 |  0  0  1  2  0 |  *  *  *  * 30  *  * | 0  0  0  2  0 0
..o3..x ...     |  0  0  3 |  0  0  0  0  3 |  *  *  *  *  * 20  * | 0  0  0  0  1 1
... ..x5..o     |  0  0  5 |  0  0  0  0  5 |  *  *  *  *  *  * 12 | 0  0  0  1  0 1
----------------+----------+----------------+----------------------+----------------
x..3o..5o..&#x   12  0  0 | 30  0  0  0  0 | 20  0  0  0  0  0  0 | 1  *  *  *  * *
xo.3oo. ...&#x    3  1  0 |  3  3  0  0  0 |  1  3  0  0  0  0  0 | * 20  *  *  * *
xo. ... ox.&#x    2  2  0 |  1  4  1  0  0 |  0  2  2  0  0  0  0 | *  * 30  *  * *
... oox5oxo&#xt   1  5  5 |  0  5  5 10  5 |  0  0  5  5  5  0  1 | *  *  * 12  * *
.oo3.ox ...&#x    0  1  3 |  0  0  0  3  3 |  0  0  0  3  0  1  0 | *  *  *  * 20 *
..o3..x5..o       0  0 30 |  0  0  0  0 60 |  0  0  0  0  0 20 12 | *  *  *  *  * 1

© 2004-2018
top of page