Acronym ikadoaid Name (1,0,0,12,0)-diminished vertex-first-rotunda of ex,trideca-diminished vertex-first rotunda of hexacosachoron,ike atop (pseudo) doe atop id Circumradius (1+sqrt(5))/2 = 1.618034 Lace cityin approx. ASCII-art ``` o5x x5o o5o f5o o5x f5o x5x o5f x5o o5f o5o o5x x5o ``` ``` x3o o3f f3o o3x o3o o3f f3x x3f f3o o3o (F=ff) o3x x3f F3o f3f o3F f3x x3o ``` Dihedral angles at {3} between tet and tet:   arccos[-(1+3 sqrt(5))/8] = 164.477512° at {3} between gyepip and tet:   arccos[-sqrt(5/8)] = 142.238756° at {3} between ike and tet:   arccos[-sqrt(5/8)] = 142.238756° at {3} between gyepip and gyepip:   120° at {3} between tet and id:   arccos[(3-sqrt(5))/sqrt(32)] = 82.238756° at {5} between gyepip and id:   72° Confer uniform relative: ex   segmentochora: ike || doe   doe || id   other CRFs: rotunda of ex   id || f-ike || ike   pt || ike || doe || id   ike || tet-dim-doe || id   ike || cube-dim-doe || id   general polytopal classes: bistratic lace towers

Incidence matrix according to Dynkin symbol

```xoo3oox5oxo&#xt   → height(1,2) = 1/2
height(2,3) = (1+sqrt(5))/4 = 0.809017
(ike || pseudo doe || id)

o..3o..5o..     | 12  *  * ♦  5  5  0  0  0 |  5 10  5  0  0  0  0 | 1  5  5  1  0 0
.o.3.o.5.o.     |  * 20  * ♦  0  3  3  3  0 |  0  3  6  3  3  0  0 | 0  1  3  3  1 0
..o3..o5..o     |  *  * 30 |  0  0  0  2  4 |  0  0  0  4  1  2  2 | 0  0  0  2  2 1
----------------+----------+----------------+----------------------+----------------
x.. ... ...     |  2  0  0 | 30  *  *  *  * |  2  2  0  0  0  0  0 | 1  2  1  0  0 0
oo.3oo.5oo.&#x  |  1  1  0 |  * 60  *  *  * |  0  2  2  0  0  0  0 | 0  1  2  1  0 0
... ... .x.     |  0  2  0 |  *  * 30  *  * |  0  0  2  0  1  0  0 | 0  0  1  2  0 0
.oo3.oo5.oo&#x  |  0  1  1 |  *  *  * 60  * |  0  0  0  2  1  0  0 | 0  0  0  2  1 0
... ..x ...     |  0  0  2 |  *  *  *  * 60 |  0  0  0  1  0  1  1 | 0  0  0  1  1 1
----------------+----------+----------------+----------------------+----------------
x..3o.. ...     |  3  0  0 |  3  0  0  0  0 | 20  *  *  *  *  *  * | 1  1  0  0  0 0
xo. ... ...&#x  |  2  1  0 |  1  2  0  0  0 |  * 60  *  *  *  *  * | 0  1  1  0  0 0
... ... ox.&#x  |  1  2  0 |  0  2  1  0  0 |  *  * 60  *  *  *  * | 0  0  1  1  0 0
... .ox ...&#x  |  0  1  2 |  0  0  0  2  1 |  *  *  * 60  *  *  * | 0  0  0  1  1 0
... ... .xo&#x  |  0  2  1 |  0  0  1  2  0 |  *  *  *  * 30  *  * | 0  0  0  2  0 0
..o3..x ...     |  0  0  3 |  0  0  0  0  3 |  *  *  *  *  * 20  * | 0  0  0  0  1 1
... ..x5..o     |  0  0  5 |  0  0  0  0  5 |  *  *  *  *  *  * 12 | 0  0  0  1  0 1
----------------+----------+----------------+----------------------+----------------
x..3o..5o..&#x  ♦ 12  0  0 | 30  0  0  0  0 | 20  0  0  0  0  0  0 | 1  *  *  *  * *
xo.3oo. ...&#x  ♦  3  1  0 |  3  3  0  0  0 |  1  3  0  0  0  0  0 | * 20  *  *  * *
xo. ... ox.&#x  ♦  2  2  0 |  1  4  1  0  0 |  0  2  2  0  0  0  0 | *  * 30  *  * *
... oox5oxo&#xt ♦  1  5  5 |  0  5  5 10  5 |  0  0  5  5  5  0  1 | *  *  * 12  * *
.oo3.ox ...&#x  ♦  0  1  3 |  0  0  0  3  3 |  0  0  0  3  0  1  0 | *  *  *  * 20 *
..o3..x5..o     ♦  0  0 30 |  0  0  0  0 60 |  0  0  0  0  0 20 12 | *  *  *  *  * 1
```