Site Map | Polytopes | Dynkin Diagrams | Vertex Figures, etc. | Incidence Matrices | Index |
Scaliformity as such was introduced as a concept in 2000, when comparing the dimensionally recursive definition of uniform polytopes
with one of the then just defined and enlisted segmentochora, with tuta. So, according to that definition, e.g. a uniform polychoron not only should provide a single class of symmetry equivalent vertices and a single edge size (which thus could be taken to be unity), but all its cells ought be uniform polyhedra in turn. And for uniform polyhedra that third requirement then just asks that its polygonal faces have to be uniform in turn. But for those 2D elements the there only remaining first 2 requirements already imply the regularity of the elements (provided a local and thus global non-zero curvature of the surface manifold).
That specific tuta (xo3xx3ox&#x), because being a segmentochoron, clearly has a unique circumsphere. Hence its vertices all are the same distance apart from the center. That is, all vertices would follow the first requirement, provided all vertices additionally can be shown to have the identical global symmetry. Well, as this obviously is the case here for the vertices in either base layer (because those bases are uniform polyhedra), it remains just to be checked whether we also have a further symmetry which interchanges these bases. In that example those bases are identical polyhedra, and therefore requirement 1 truely is fulfilled. Next, the second requirement, already is fulfilled by the definition of segmentochora, i.e. all edges already have unit size. Thus we are left with the third requirement here, i.e. whether all cells would be uniform polyhedra. But this one then is broken here, as the lacing cells of that segmentochoron use Johnson solids as well, in fact there are tricues (xo3xx ..&#x).
The very find of tuta gave rise for a new class of such polytopes, which still follow the first 2 requirements of uniformity, but will not bow to the third one. As a working title such polytopes in those days where called weakly uniform. Five years later, in 2005, this rather negatively attributed term was recoined positively by an own term, scaliform. Further, in this run, it was taken into account also its application to according flat, i.e. euclidean polytopes (like honeycombs etc.). This is why an own third requirement was added instead (which in global non-zero curvatures clearly would be deducible from the former ones):
Right from this definition it follows that 2D scaliforms already are regular polygons. Furthermore, the 3D scaliforms already are the uniform polyhedra. But beyond 3D this definition clearly is more liberate. The research for scaliform polytopes is still ongoing. A general classification of these polytopes (outside from the above definition) still is pending.
Only in November 2020 it was proven that the non-uniform scaliform polychora include infinite series too: by the find of the (n/d,n/(n-d))-hemiantiprisms.
Below a mere listing of (just some) of the purely scaliform polytopes will be given, i.e. of those which are scaliform, but not uniform. Accordingly this has to start with 4D for the lowest case. There at least one cell type has to be a Johnson solid – or would belong to some counterpart of that set, encompassing according non-convex polyhedra. (Cf. the † symbol below).
But note, this remark already provides an example that for scaliforms the recursivity axiom (as being used for uniformity) is broken: the facets of scaliform polytopes need not be scaliform themself. It is just that the local arrangement of such facets at any vertex provides the overall transitiveness of symmetry on the vertex flags.
E.g. for tuta we have 3 tricues per vertex: one adjoining by its top triangle and 2 adjoining by their bottom hexagon.
° - such marked scaliforms are convex
†n - such marked elements are not themself uniform and thus qualify the (overall) polytope to be just scaliform; here n provides the number of
according vertex types. (Clearly, for n=1 that facet itself would be scaliform.)
---- 4D purely scaliforms (up) ----
circumradius | scaliform polychora | facet total |
---|---|---|
0.615370 |
otbaquitit |
64 tet + 16 tuquith†2 |
0.618034 |
birgax |
48 targi†3 |
gypasp |
240 stappy†2 | |
0.707107 |
dastop |
12 stap + 24 stiscu†2 |
(n/d,n/(n-d))-hap |
2 n/d-ap + 2 n/(n-d)-ap + 2n bobipyr†2 | |
hatho |
4 bobipyr†2 + 4 tet | |
koho |
4 bobipyr†2 + 8 tet | |
setho |
4 bobipyr†2 + 12 tet | |
hossdap - reduced( xo5/2ox5/2oo5/2*a&#x by x5/2o5/2o5/2*a each ) |
12 stap + 24 stappy†2 | |
0.726543 |
sporraggix |
600 squippy†2 + 120 starp + 120 stip |
0.732444 |
hog dhidicup |
12 stap + 24 rastacu†2 |
0.790569 |
hocucup |
6 so + 12 tutrip†2 |
1 |
disdi |
24 gad + 96 scuffi†3 + 96 scufgi†3 + 24 sissid |
gastakix |
3600 tupip†3 | |
mesdi |
24 gike + 24 ike + 96 dritit†3 | |
sistakix |
3600 tustip†3 | |
tocap |
50 squippy†2 + 10 stip + 50 tet | |
gocap |
10 pip + 50 squippy†2 + 50 tet | |
1.224745 |
tuta° - xo3xx3ox&#x |
6 tet + 8 tricu†2 + 2 tut |
1.328131 |
prarsi - s3/2s4o3x |
24 gike + 96 tricu†2 + 96 trip + 24 tut |
1.618034 |
bidex° |
48 teddi†3 |
spysp |
240 peppy†2 | |
dexdap |
20 doe + 100 ifbah†3 + 100 tet | |
1.765796 |
siida - xx3xo5/2ox3*a&#x |
2 siid + 12 stap + 40 tricu†2 |
2.149726 |
otbott |
64 tet + 16 tutic†2 |
2.497212 |
prissi° - s3s4o3x |
24 ike + 96 tricu†2 + 96 trip + 24 tut |
2.739576 |
shi - reduced( β3β5o5/2o by 120 β5o5/2o ) |
120 seside + 1440 stappy†2 |
3.077684 |
spidrox° |
120 pap + 120 pip + 600 squippy†2 |
3.625437 |
prishi - reduced( β3β5o5/2x by 120 β5o5/2x ) |
120 seside + 1440 stiscu†2 + 2400 trip |
scaliform euclidean honeycombs | ||
∞ |
3Q3-S3-2P6-2P3-gyro° |
N hip + N oct + 2N tricu†2 + 2N trip |
3Q3-S3-2P6-2P3-ortho° |
N hip + N oct + 2N tricu†2 + 2N trip | |
3Q4-T-2P8-P4° |
N cube + N op + 2N squacu†2 + 2N tet | |
5Y4-3T-3Q3-T3° |
12N squippy†2 + 9N tet + 4N tricu†2 + N tut | |
5Y4-4T-4P4° |
N cube + 2N squippy†2 + 2N tet | |
5Y4-4T-6P3-sq-para° |
N squippy†2 + N tet + N trip | |
5Y4-4T-6P3-sq-skew° |
2N squippy†2 + 2N tet + 2N trip | |
5Y4-4T-6P3-tri-0° |
2N squippy†2 + 2N tet + 2N trip | |
5Y4-4T-6P3-tri-1-alt° |
2N squippy†2 + 2N tet + 2N trip | |
5Y4-4T-6P3-tri-1-hel° |
2N squippy†2 + 2N tet + 2N trip | |
5Y4-4T-6P3-tri-2-alt° |
2N squippy†2 + 2N tet + 2N trip | |
5Y4-4T-6P3-tri-2-hel° |
2N squippy†2 + 2N tet + 2N trip | |
5Y4-4T-6P3-tri-3° |
2N squippy†2 + 2N tet + 2N trip | |
6Q3-2S3-gyro° |
N oct + 2N tricu†2 | |
6Q3-2S3-ortho° |
N oct + 2N tricu†2 | |
6Q4-2T° |
2N squacu†2 + 2N tet | |
10Y4-8T-0° |
2N squippy†2 + 2N tet | |
10Y4-8T-1-alt° |
2N squippy†2 + 2N tet | |
10Y4-8T-1-hel° |
2N squippy†2 + 2N tet | |
10Y4-8T-2-alt° |
2N squippy†2 + 2N tet | |
10Y4-8T-2-hel° |
2N squippy†2 + 2N tet | |
10Y4-8T-3° |
2N squippy†2 + 2N tet | |
gyrich° - s∞o2s6o3x |
N oct + N tobcu†2 | |
squatap° - s2s4o4o |
2 squat + 2N squippy†2 + 2N tet | |
scaliform hyperbolic honeycombs | ||
... |
pristrah° |
NM that + NK trat + NMK tricu†2 + NMK trip |
... |
s3s4o4o° |
NM ike + 3N squat + 3NM squippy†2 |
... |
s3s4o4x° |
NM ike + 3NM squacu†2 + 3N tosquat + 4NM trip |
0.353553 i |
s4o3o4s4*b° |
2NM hihexat + 6NK squat + 4NMK tet + 4NMK tricu†2 |
---- 5D purely scaliforms (up) ----
circumradius | scaliform polytera | facet total |
---|---|---|
0.623054 |
stadow - xo5/2oo ox5/2oo&#x |
10 stasc†2 |
0.629640 |
ogdow - xo8/3oo ox8/3oo&#x |
16 ogasc†2 |
0.674163 |
shadow - xo7/2oo ox7/2oo&#x |
14 shasc†2 |
0.680827 |
gashia - xo5/2oo5oo5/2ox&#x |
2 gashi + 240 sissidpy†2 + 1440 stasc†2 |
0.742632 |
hossidgyt - reduced( xoo5/2oxo5/2oox5/2*a&#x by x5/2o5/2o5/2*a each ) |
3 hossdap†1 + 36 stapepy†2 |
0.790569 |
triddaf° - xo ox xo3ox&#x |
6 squasc†2 + 4 traf†2 |
0.816497 |
tedrix° - xxo xox oxx&#x |
6 bidrap†2 + 3 tepe |
0.866025 |
tridafup° - xo3ox xo3ox&#x |
12 traf†2 + 2 triddip |
0.895420 |
squiddaf° - xo ox xo4ox&#x |
4 squaf†2 + 8 squasc†2 |
1.050501 |
icoap° - xo3oo4oo3ox&#x |
2 ico + 48 octpy†2 + 192 pen |
1.074481 |
sitpodadia - oo5/2oo3xo5/2ox3*b |
240 gikepy†2 + 120 sidtidap + 2 sitpodady |
sishia |
120 hossdap†1 + 2 sishi + 240 sissidpy†2 | |
1.098185 |
hodidgyt - reduced( xxo5/2xox5/2oxx5/2*a&#x by x5/2x5/2o5/2*a each ) |
3 dastop†1 + 36 stisaw†2 |
1.125151 |
pirgadia |
120 hog dhidicup†1 + 2 pirgady + 720 stappip + 240 tiggia gaquatid†2 |
1.190238 |
pabex hix° - xx3xo xx3ox&#x |
2 thiddip + 6 tricuf†2 + 6 tricupe†2 |
1.224745 |
sripa° - ox3xo3ox3xo&#x |
10 octaco†2 + 2 srip + 20 traf†2 |
1.248606 |
ragashia - oo5/2xo5ox5/2oo&#x |
240 gaddadid†2 + 2 ragashi |
1.274755 |
pexhin° - xo3xx3ox xo ox&#zx |
6 hex + 12 tepe + 16 tricuf†2 + 4 tuta†1 |
rita° - xo3oo3ox *b3xx&#x |
8 hex + 2 rit + 24 tepe + 16 tetaco†2 | |
1.322876 |
tutcupip° - xx xo3xx3ox&#x |
6 tepe + 8 tricupe†2 + 2 tuta†1 + 2 tuttip |
1.618034 |
sirgashia - xo5/2ox5xo5/2ox&#x |
240 dida raded†2 + 2 sirgashi + 1440 stafe†2 |
1.620185 |
thexa° - xo3xx3ox *b3oo&#x |
16 octatut†2 + 2 thex + 8 tuta†1 |
1.658312 |
pripa° - xx3ox3xo3xx&#x |
10 coatut†2 + 2 prip + 20 tricupe†2 |
1.677756 |
sutia - xx3ox4xo3xx4/3*a&#x |
48 quithaquitco†2 + 48 sircoatoe†2 + 2 suti |
1.778824 |
ricoa° - oo3xo4ox3oo&#x |
48 cubaco†2 + 2 rico |
1.870829 |
gripa° - ox3xx3xx3xo&#x |
2 grip + 20 tricuf†2 + 10 tutatoe†2 |
1.917564 |
righia - oo5xo5/2ox5oo&#x |
2 righi + 240 sissidadid†2 |
2.150581 |
taha° - xo3xx3ox *b3xx&#x |
2 tah + 24 tepe + 16 tutatoe†2 + 8 tuta†1 |
2.352869 |
ditdia - xx3xo4xx3ox4*a4/3*c&#x |
2 ditdi + 48 goccoa cotco†2 + 48 toatic†2 |
2.527959 |
sid pippadia - reduced( xx5oo5/2xo5/2ox5/2*b&#x, by . o5/2x5/2o5/2*b each ) |
240 gaddaraded†2 + 120 hossdap†1 + 2 sid pippady + 720 stappip |
2.632865 |
sricoa° - xo3ox4xo3ox&#x |
48 coasirco†2 + 2 srico + 192 traf†2 |
2.829949 |
rasishia |
120 dastop†1 + 240 didadoe†2 + 2 rasishi |
3.404434 |
sirghia - xo5ox5/2xo5ox&#x |
240 dida raded†2 + 1440 paf†2 + 2 sirghi |
3.522336 |
pricoa° - xx3xo4ox3xx&#x |
2 prico + 48 sircoatoe†2 + 192 tricupe†2 |
3.855219 |
stut phiddixa - xx3oo3xo5/2ox3*b&#x |
120 sidtidap + 720 stappip + 2 stut phiddix + 1200 tetaco†2 |
4.311477 |
gricoa° - xo3xx4xx3ox&#x |
2 grico + 48 ticagirco†2 + 192 tricuf†2 |
4.923348 |
pirghia - xx5xo5/2ox5xx&#x |
1440 pecupe†2 + 2 pirghi + 240 radeda tigid†2 |
5.345177 |
wavhiddixa - oo3xx3xo5/2ox3*b&#x |
1200 octatut†2 + 120 siida†1 + 2 wavhiddix |
6.881910 |
sphiddixa - xx3xx3xo5/2ox3*b&#x |
120 siida†1 + 2 sphiddix + 720 stappip + 1200 tutatoe†2 |
... |
n/d-daf - xo ox xo-n/d-ox&#x (° for d=1) |
4 n/d-af†2 + 2n squasc†2 |
... |
n,m-dafup° - xo-n-ox xo-m-ox&#x |
2m n-af†2 + 2 n,m-dip + 2n m-af†2 |
... |
n/d-dow - xo-n/d-oo ox-n/d-oo&#x (° for d=1) |
2n n/d-sc†2 |
... |
n/d,2n/d-dipcup - xx-n/d-xo xx-n/d-ox&#x (° for d=1) |
2n n/d-cuf†2 + 2n n/d-cupe†2 + 2 n/d,2n/d-dip |
scaliform euclidean tetracombs | ||
∞ |
capirsit° - s3s3s4o3x |
24N ipe + N prissi†1 + 3N sadi + 96N tricuf†2 + 32N triddip + 12N tuta†1 |
capshot° - s3s4o3o3x |
12N ipe + 3N rit + N sadi + 24N tetaco†2 + 32N triddip | |
capsthat° - s3s4o3x3x |
12N ipe + N prissi†1 + 3N tah + 32N thiddip + 24N tutatoe†2 | |
cesratit° - s4o3x3o4s |
3N hex + N thex + 8N tuta†1 | |
paltite° - s3s4o3x3o |
24N octatut†2 + N prissi†1 + 3N thex + 32N triddip | |
scaliform hyperbolic tetracombs | ||
... |
rect( o4x4o3*a4x4o3*a )° |
8NKL o3x3x4o4*b + 8NP rect( x4o3o4x4*b )†2 + 3NMKLP rit + 8NMKLP tuta†1 |
... |
trunc( o4x4o3*a4x4o3*a )° |
8NKL o3x3x4x4*b + 3NMKLP tat + 8NP trunc( x4o3o4x4*b )†2 + 8NMKLP tuta†1 |
0.25 i |
o4s4o3*a4s4o3*a° |
3NMKLP hex + 8NKL o3o3o4s4*b + 8NP s4o3o4s4*b†1 + 4NMKLP tuta†1 |
---- 6D purely scaliforms (up) ----
circumradius | scaliform polypeta | facet total |
---|---|---|
0.707107 |
gisdiddit |
6400 hix + 576 stadow†1 + 3840 state†2 |
starpglassdit - oxoo5/2ooox xooo5/2ooxo&#xr |
10 bostarpglassdit†2 + 4 stadow†1 | |
0.816497 |
tedjak° - xoo3ooo3oxo *b3oox&#x |
24 hexpy†2 + 3 hin + 24 hix |
endjak° - xo3ox xo3oo ox3oo&#zx |
6 hix + 18 squete†2 + 9 triddaf†1 | |
0.866025 |
rixa° - oo3xo3oo3ox3oo&#x |
12 dihin†2 + 20 hix + 2 rix |
tratetdafup° - xo3ox xo3oo3ox&#x |
6 tetaf†2 + 2 tratet + 8 trial triddip†2 + 6 triddaf†1 | |
odhax° - xxo xox oxx oox oxo xoo&#zx |
8 hix + 12 tedhin†2 + 8 tedrix†1 | |
0.925820 |
ladbril° |
7 teddot†2 + 7 tedrix†1 + 7 tratet |
1 |
tridafupip° - xo3ox xo3ox xx&#x |
12 traffip†2 + 2 tratrip + 2 tridafup†1 |
oddimo° - xo3ox xo3ox xo3ox&#zx |
18 tridafup†1 + 54 triddaf†1 | |
xedrag° - xxo4ooo xox4ooo oxx4ooo&#zx |
12 hexip + 64 tedrix†1 | |
1.224745 |
spixa° - xo3ox3oo3xo3ox&#x |
12 rapaspid†2 + 2 spix + 30 teta ope†2 + 20 tridafup†1 |
hidbrag° - xo3ox4oo ox3xo4oo&#zx |
12 tedrat†2 + 64 tridafup†1 + 16 troct | |
1.290994 |
medrojak° - oxx3xox xox3xxo xxo3oxx&#zx |
162 cubasquasc†3 + 27 squoct + 54 tedrix†1 + 54 traffip†2 + 18 tratrip + 27 triddaf†1 |
ritgyt° - xxo3ooo3xox *b3oxx&#x |
24 hexaco†2 + 3 rita†1 + 24 tedrix†1 | |
1.322876 |
pexhax° - xo3xx3ox xo3oo3ox&#zx |
12 hexip + 6 hin + 6 pexhin†1 + 32 pexhix†2 + 8 tratet |
bitettut° - xx3ox3oo xx3xo3oo&#zx |
8 hatet + 16 hix + 16 pabexhix†1 + 32 pexhix†2 + 8 tratet | |
siphina° - xo3oo3ox *b3oo3xx&#x |
40 hexip + 10 hin + 32 penaspid†2 + 2 siphin + 80 tratet | |
ritas° - xoxo3oooo3oxox *b3xxxx&#xr |
24 hexip + 8 hin + 4 rita†1 + 32 tepaco†2 + 32 tratet | |
1.414214 |
codibrox° - xxo4ooq xox4oqo oxx4qoo&#zx |
12 bodnit†2 + 48 squatet + 64 tedrix†1 |
1.581139 |
bittixa° - oo3xo3xx3ox3oo&#x |
2 bittix + 20 hix + 12 tipadeca†2 |
1.632993 |
thexgyt° - xoo3xxx3oxo *b3oox&#x |
24 hix + 24 octa tutcup†2 + 3 thexa†1 |
1.658312 |
cappixa° - xx3xo3oo3ox3xx&#x |
2 cappix + 20 pabex hix†1 + 12 spidatip†2 + 30 tepeatuttip†2 |
sirhina° - xo3oo3ox *b3xx3oo&#x |
32 rapalsrip†2 + 10 rita†1 + 2 sirhin + 80 tratet | |
pabex hax° - xo3xx3ox xo3xx3ox&#zx |
32 pabex hix†1 + 16 tratet + 12 pexhin†1 + 24 tutcupip†1 | |
1.870829 |
bicotoe° - xo3xx4oo ox3xx4oo&#zx |
16 haco + 64 pabex hix†1 + 36 pent + 12 squaco + 96 squatricu†2 |
1.978437 |
redscox° - xxo4xxx xox4xxx oxx4xxx&#zx |
24 sidpithip + 192 squasquippy†2 + 64 tedrix†1 + 192 tepacube†2 + 64 tracube |
2.160247 |
tahgyt° - xxo3xxx3xox *b3oxx&#x |
3 taha†1 + 24 tedrix†1 + 24 tutcupa toe†2 |
2.263033 |
big dispox° - xo3ox4xx ox3xo4xx&#zx |
12 cydispan†2 + 144 squatet + 192 traffip†2 + 16 trasirco + 64 tridafup†1 |
2.345208 |
cograxa° - xx3xo3xx3ox3xx&#x |
2 cograx + 30 copeatope†2 + 20 pabex hix†1 + 12 pripagrip†2 |
---- 7D purely scaliforms (up) ----
circumradius | scaliform polyexa | facet total |
---|---|---|
0.646447 |
quithdow - xo4/3xo3oo ox4/3ox3oo&#x |
12 ogquithdow†2 + 16 tiquithdow†2 |
0.831254 |
sissiddow - xo5/2oo5oo ox5/2oo5oo&#x |
24 stasissiddow†2 |
0.866025 |
rila° - oo3xo3oo3oo3ox3oo&#x |
14 hixalrix†2 + 70 octete†2 + 2 ril |
jaka° - xo3oo3oo3oo3ox *c3oo&#x |
72 gee + 432 hop + 2 jak + 54 tacpy†2 | |
trapendafup° - xo3ox xo3oo3oo3ox&#x |
6 penaf†2 + 2 trapen + 10 trial tratet†2 + 20 tripal triddip†2 | |
idinaq° - xo3ox xo3oo3oo3oo3ox&#zx |
20 endjak†1 + 6 gee + 36 hop + 90 squepe†2 | |
odinaq° - xoo oxo oox oxo3ooo3oox *e3xoo&#zx |
24 gee + 96 hexasc†2 + 192 hop + 8 tedjak†1 | |
tedroc° |
4 hixip + 8 tidril†2 | |
0.935414 |
trahex dafup° - xo3ox xo3oo3ox *d3oo&#x |
6 hexaf†2 + 2 trahex + 8 tratetdafup†1 + 16 trial tratet†2 |
tridafupap° - xoxo3oxox xxoo3ooxx&#x |
4 triddippa tridafup†2 + 12 tritra ope†2 | |
0.968246 |
tetocta° - oo3ox3xo oo3xo3ox&#x |
8 octa tratet†2 + 2 tetoct + 8 tratet altroct†2 |
1 |
ihdlaq° - xxo xox oxx oox3ooo3oxo *e3xoo&#zx |
6 hax + 48 hedjak†2 + 24 odhax†1 + 8 tedjak†1 |
sadlaq° - xxxxooo xxoooxx xoxoxox xooxxxo oxxoxxo oxoxxox ooxxoxx&#zx |
14 hax + 128 hop + 56 tedjak†1 | |
thidlaq° - xo3ox oo3xo3oo3ox3oo&#zx |
20 endjak†1 + 36 rapalpenp†2 + 6 rixa†1 + 12 trapen + 30 tratetdafup†1 | |
trarapdafup° - xo3ox oo3xo3ox3oo&#x |
6 rappaf†2 + 2 trarap + 10 tratetaltroct†2 | |
1.040833 |
titridafup° - xo3ox xo3ox xx3oo&#x |
12 titraf†2 + 3 tridafupip†1 + 2 trittip>†2 |
1.224745 |
scala° - xo3ox3oo3oo3xo3ox&#x |
42 pena rappip†2 + 14 rixascad†2 + 2 scal + 70 tratet altroct†2 |
1.322876 |
spila° - xo3oo3ox3xo3oo3ox&#x |
14 dottaspix†2 + 42 spida rappip†2 + 2 spil + 70 tetal tratet†2 |
hidlin° - xo3oo3ox3oo3xo3oo3ox&#zx |
16 bril + 56 pabdimo†2 + 56 rixa†1 + 70 hax | |
rojaka° - oo3xo3oo3ox3oo *c3oo&#x |
54 hinro†2 + 72 rixa†1 + 2 rojak | |
ritgyo° - xoo oxo oox xxo3ooo3xox *e3oxx&#zx |
48 hinaco†2 + 24 odhax†1 + 8 ritgyt†1 | |
1.414214 |
ritgyco° - xxo xox oxx xxo3ooo3xox *e3oxx&#zx |
96 hexipaco†2 + 24 hinnip + 192 pedril†2 + 6 ritas†1 + 8 ritgyt†1 + 24 xedrag†1 |
1.581139 |
sabrila° - oo3xo3ox3xo3ox3oo&#x |
2 sabril + ... |
1.658312 |
hejaka° - xo3oo3oo3oo3ox *c3xx&#x |
72 gee + 2 hejak + 54 hinasiphin†2 + 720 hixip + 432 spidapenp†2 |
1.936492 |
crala° - xo3ox3xo3ox3xo3ox&#x |
2 cral + ... |
shopjaka° - xo3ox3oo3xo3ox *c3oo&#x |
2 shopjak + ... | |
... |
(N,M)-dafupap° - xoxoNoxox xxooMooxx&#x |
4 (N,M)-dip||(N,M)-dafup†2 + 2m (N-g,dual N-g,N-p,gyro N-p) lace simplex†2 + 2n (M-g,dual M-g,M-p,gyro M-p) lace simplex†2 |
---- 8D purely scaliforms (up) ----
circumradius | scaliform polyzetta | facet total |
---|---|---|
1 |
broca° - oo3oo3xo3oo3ox3oo3oo&#x |
2 broc + 70 oca + 16 rilalbril†2 |
jakap° - xx xo3oo3oo3oo3ox *d3oo&#x |
72 geep + 432 hopip + 2 jaka†1 + 2 jakip + 54 tacpyp†2 | |
kadify° - oo3oo3xo3oo3oo3ox3oo3oo&#zx |
630 oca + 1260 octepe†2 + 72 rila†1 + 18 roc | |
tijakdap° - xo3ox xo3oo3oo3oo3ox *e3oo&#zx |
72 idinaq†1 + 6 jaka†1 + 1296 squix†2 + 162 taccasc†2 | |
codify° - xoo3ooo3oxo *b3oox xoo3ooo3oxo *f3oox&#zx |
1536 hexete†2 + 384 oca + 48 odinaq†1 | |
scaliform euclidean heptacombs | ||
∞ |
jakoha° - xo3oo3oo3oo3ox *c3oo3oo&#x |
N jaka†1 + 2 jakoh + 2N jakpy†2 + 72N oca |
---- 9D purely scaliforms (up) ----
circumradius | scaliform polyyotta | facet total |
---|---|---|
1.118034 |
rapdafup° - oo3xo3ox3oo oo3xo3ox3oo&#x |
2 rapdip + 20 tetrappal octrap†2 |
© 2004-2024 | top of page |