Acronym ... Name hossdap + 2 2sissid (?) Circumradius 1/sqrt(2) = 0.707107 Confer hossdap

This holosnub indeed can be resized back to all unit edge lengths, resulting then in a blend of hossdap with the there pseudo bases being filled in with Grünbaumian double-covered sissids each. Accordingly the edges and faces of each of those 2sissid again all are pairwise coincident each as well, while its vertices however are unique.

The vertex figure of "hossdap + 2 2sissid" is a variant of stacu, in fact the version xv5/2ov&#x.

Incidence matrix according to Dynkin symbol

β2β5o5/2o

both( . . .   . ) | 24 |  5  10 |  5  15  5 |  5 1  6
------------------+----+--------+-----------+--------
β2β .   .   |  2 | 60   * |  0   4  0 |  2 0  2
sefa( . β5o   . ) |  2 |  * 120 |  1   1  1 |  1 1  1
------------------+----+--------+-----------+--------
. β5o   .     5 |  0   5 | 24   *  * |  1 1  0  {5/2}
sefa( β2β5o   . ) |  3 |  2   1 |  * 120  * |  1 0  1
sefa( . β5o5/2o ) |  5 |  0   5 |  *   * 24 |  0 1  1  {5/2}
------------------+----+--------+-----------+--------
β2β5o   .    10 | 10  10 |  2  10  0 | 12 *  *
. β5o5/2o    12 |  0  60 | 12   0 12 |  * 2  *
sefa( β2β5o5/2o )   6 |  5   5 |  0   5  1 |  * * 24

starting figure: x x5o5/2o

xo5/2ox5/2oo5/2*a&#x   → height = sqrt[(sqrt(5)-1)/2] = 0.786151

o.5/2o.5/2o.5/2*a    & | 24 |  10  5 |  5  5  15 | 1  5  6
-----------------------+----+--------+-----------+--------
x.   ..   ..         & |  2 | 120  * |  1  1   1 | 1  1  1
oo5/2oo5/2oo5/2*a&#x   |  2 |   * 60 |  0  0   4 | 0  2  2
-----------------------+----+--------+-----------+--------
x.5/2o.   ..         & |  5 |   5  0 | 24  *   * | 1  1  0
x.   ..   o.5/2*a    & |  5 |   5  0 |  * 24   * | 1  0  1
xo   ..   ..     &#x & |  3 |   1  2 |  *  * 120 | 0  1  1
-----------------------+----+--------+-----------+--------
x.5/2o.5/2o.5/2*a    &  12 |  60  0 | 12 12   0 | 2  *  *
xo5/2ox   ..     &#x    10 |  10 10 |  2  0  10 | * 12  *
xo   ..   oo5/2*a&#x &   6 |   5  5 |  0  1   5 | *  * 24