Acronym sitpodady Name small (intersected) tripesic dodecahedronary dishecatonicosachoron Cross sections ` ©` Circumradius 1 Coordinates (1, 0, 0, 0)                                         & all permutations, all changes of sign (vertex inscribed q-hex) (1/2, 1/2, 1/2, 1/2)                             & all permutations, all changes of sign (vertex inscribed tes) ((1+sqrt(5))/4, (sqrt(5)-1)/4, 1/4, 0)   & all even permutations, all changes of sign (vertex inscribed v-sadi) General of army ex Colonel of regiment sishi Externallinks

As abstract polytope sitpodady is isomorphic to gitpodady, thereby replacing pentagrams by pentagons, resp. replacing sidtid by gidtid and gike by ike.

This is a fissary polychoron.

Incidence matrix according to Dynkin symbol

```o5/2o3x5/2o3*b

.   . .   .    | 120 |   60 |   60  30 |  12  20
---------------+-----+------+----------+--------
.   . x   .    |   2 | 3600 |    2   1 |   1   2
---------------+-----+------+----------+--------
.   o3x   .    |   3 |    3 | 2400   * |   1   1
.   . x5/2o    |   5 |    5 |    * 720 |   0   2
---------------+-----+------+----------+--------
o5/2o3x   .    ♦  12 |   30 |   20   0 | 120   *
.   o3x5/2o3*b ♦  20 |   60 |   20  12 |   * 120
```

```o5/2o3x5/3o3/2*b

.   . .   .      | 120 |   60 |   60  30 |  12  20
-----------------+-----+------+----------+--------
.   . x   .      |   2 | 3600 |    2   1 |   1   2
-----------------+-----+------+----------+--------
.   o3x   .      |   3 |    3 | 2400   * |   1   1
.   . x5/3o      |   5 |    5 |    * 720 |   0   2
-----------------+-----+------+----------+--------
o5/2o3x   .      ♦  12 |   30 |   20   0 | 120   *
.   o3x5/3o3/2*b ♦  20 |   60 |   20  12 |   * 120
```

```o5/2o3/2x5/2o3/2*b

.   .   .   .      | 120 |   60 |   60  30 |  12  20
-------------------+-----+------+----------+--------
.   .   x   .      |   2 | 3600 |    2   1 |   1   2
-------------------+-----+------+----------+--------
.   o3/2x   .      |   3 |    3 | 2400   * |   1   1
.   .   x5/2o      |   5 |    5 |    * 720 |   0   2
-------------------+-----+------+----------+--------
o5/2o3/2x   .      ♦  12 |   30 |   20   0 | 120   *
.   o3/2x5/2o3/2*b ♦  20 |   60 |   20  12 |   * 120
```

```o5/2o3/2x5/3o3*b

.   .   .   .    | 120 |   60 |   60  30 |  12  20
-----------------+-----+------+----------+--------
.   .   x   .    |   2 | 3600 |    2   1 |   1   2
-----------------+-----+------+----------+--------
.   o3/2x   .    |   3 |    3 | 2400   * |   1   1
.   .   x5/3o    |   5 |    5 |    * 720 |   0   2
-----------------+-----+------+----------+--------
o5/2o3/2x   .    ♦  12 |   30 |   20   0 | 120   *
.   o3/2x5/3o3*b ♦  20 |   60 |   20  12 |   * 120
```

```o5/3o3x5/2o3*b

.   . .   .    | 120 |   60 |   60  30 |  12  20
---------------+-----+------+----------+--------
.   . x   .    |   2 | 3600 |    2   1 |   1   2
---------------+-----+------+----------+--------
.   o3x   .    |   3 |    3 | 2400   * |   1   1
.   . x5/2o    |   5 |    5 |    * 720 |   0   2
---------------+-----+------+----------+--------
o5/3o3x   .    ♦  12 |   30 |   20   0 | 120   *
.   o3x5/2o3*b ♦  20 |   60 |   20  12 |   * 120
```

```o5/3o3x5/3o3/2*b

.   . .   .      | 120 |   60 |   60  30 |  12  20
-----------------+-----+------+----------+--------
.   . x   .      |   2 | 3600 |    2   1 |   1   2
-----------------+-----+------+----------+--------
.   o3x   .      |   3 |    3 | 2400   * |   1   1
.   . x5/3o      |   5 |    5 |    * 720 |   0   2
-----------------+-----+------+----------+--------
o5/3o3x   .      ♦  12 |   30 |   20   0 | 120   *
.   o3x5/3o3/2*b ♦  20 |   60 |   20  12 |   * 120
```

```o5/3o3/2x5/2o3/2*b

.   .   .   .      | 120 |   60 |   60  30 |  12  20
-------------------+-----+------+----------+--------
.   .   x   .      |   2 | 3600 |    2   1 |   1   2
-------------------+-----+------+----------+--------
.   o3/2x   .      |   3 |    3 | 2400   * |   1   1
.   .   x5/2o      |   5 |    5 |    * 720 |   0   2
-------------------+-----+------+----------+--------
o5/3o3/2x   .      ♦  12 |   30 |   20   0 | 120   *
.   o3/2x5/2o3/2*b ♦  20 |   60 |   20  12 |   * 120
```

```o5/3o3/2x5/3o3*b

.   .   .   .    | 120 |   60 |   60  30 |  12  20
-----------------+-----+------+----------+--------
.   .   x   .    |   2 | 3600 |    2   1 |   1   2
-----------------+-----+------+----------+--------
.   o3/2x   .    |   3 |    3 | 2400   * |   1   1
.   .   x5/3o    |   5 |    5 |    * 720 |   0   2
-----------------+-----+------+----------+--------
o5/3o3/2x   .    ♦  12 |   30 |   20   0 | 120   *
.   o3/2x5/3o3*b ♦  20 |   60 |   20  12 |   * 120
```

```β5o3o5/2o

both( . . .   . ) | 120 |   60 |  30   60 |  20  12
------------------+-----+------+----------+--------
sefa( β5o .   . ) |   2 | 3600 |   1    2 |   2   1
------------------+-----+------+----------+--------
β5o .   .   |   5 |    5 | 720    * |   2   0  {5/2}
sefa( β5o3o   . ) |   3 |    3 |   * 2400 |   1   1
------------------+-----+------+----------+--------
β5o3o   .   ♦  20 |   60 |  12   20 | 120   *
sefa( β5o3o5/2o ) ♦  12 |   30 |   0   20 |   * 120

starting figure: x5o3o5/2o
```