Acronym ..., 3Q3-S3-2P6-2P3-gyro
Name parallelly that dissected, elongated rich
 
 ©
Confer
related CRF honeycombs:
erich   6Q3-2S3-gyro   3Q3-S3-2P6-2P3-ortho  
general polytopal classes:
scaliform  
External
links
mcneill

This scaliform honeycomb is the elongated form of 6Q3-2S3-gyro.

Polar pairs of tricu and an equatorial hip could be joined each into an etigybcu. Then this honeycomb would become erich.


Incidence matrix

(N → ∞)

6N |  2  2  1  2 |  1  1  2  4  3  2 |  3 1  2 2
---+-------------+-------------------+----------
 2 | 6N  *  *  * |  1  0  1  1  0  1 |  2 0  1 1  plane, tricu-inc.*)
 2 |  * 6N  *  * |  0  1  1  1  1  0 |  1 1  1 1  plane, oct-inc.
 2 |  *  * 3N  * |  0  0  0  4  0  0 |  0 0  2 2  parallels
 2 |  *  *  * 6N |  0  0  0  0  2  1 |  2 1  0 0  obliques
---+-------------+-------------------+----------
 3 |  3  0  0  0 | 2N  *  *  *  *  * |  1 0  1 0  plane, tricu-trip
 3 |  0  3  0  0 |  * 2N  *  *  *  * |  0 1  1 0  plane, oct-trip
 6 |  3  3  0  0 |  *  * 2N  *  *  * |  1 0  0 1  planar hexagons
 4 |  1  1  2  0 |  *  *  * 6N  *  * |  0 0  1 1  parallel squares
 3 |  0  1  0  2 |  *  *  *  * 6N  * |  1 1  0 0  obl. triangles
 4 |  2  0  0  2 |  *  *  *  *  * 3N |  2 0  0 0  obl. squares
---+-------------+-------------------+----------
 9 |  6  3  0  6 |  1  0  1  0  3  3 | 2N *  * *  tricu
 6 |  0  6  0  6 |  0  2  0  0  6  0 |  * N  * *  oct
 6 |  3  3  3  0 |  1  1  0  3  0  0 |  * * 2N *  trip
12 |  6  6  6  0 |  0  0  2  6  0  0 |  * *  * N  hip

*) top base is referred to only

© 2004-2024
top of page