Acronym n/d-af
Name n/d-grammal antifastegium,
n/d-grammal - n/d-antiprismatic wedge,
{n/d} || gyro n/d-prism
Segmentochoron display / VRML
 
Circumradius sqrt[(1+2 cos(π d/n)-2 cos2(π d/n))/(2+4 cos(π d/n)-6 cos2(π d/n))]
Face vector 3n, 8n, 7n+3, 2n+3
Especially n-af (d=1)   squasc (n=2,d=1)   traf (n=3,d=1)   reduced( 3/2-af )   squaf (n=4,d=1)   paf (n=5,d=1)   stafe (n=5,d=2)   haf (n=6,d=1)   oaf (n=8,d=1)   daf (n=10,d=1)  
Confer
general polytopal classes:
segmentochora  

Somehow the case of n/d=3/2 counts in by concept, however it has coincidences and thence will require to get reduced, i.e. would differ a bit in its incidences.


Incidence matrix according to Dynkin symbol

xoo-n/d-oxx&#x   → height(1,2) = height(1,3) = sqrt[(1+2 cos(π d/n))/(2+2 cos(π d/n))]
                 height(2,3) = 1
( {n/d} || (dual {n/d} || dual {n/d}) )

o..     o..    | n * * | 2  2  2 0 0 0 | 1 2 1 2 1  2 0 0 0 | 1 1 2 1 0
.o.     .o.    | * n * | 0  2  0 2 1 0 | 0 1 2 0 0  2 1 2 0 | 1 0 1 2 1
..o     ..o    | * * n | 0  0  2 0 1 2 | 0 0 0 1 2  2 0 2 1 | 0 1 1 2 1
---------------+-------+---------------+--------------------+----------
x..     ...    | 2 0 0 | n  *  * * * * | 1 1 0 1 0  0 0 0 0 | 1 1 1 0 0
oo.-n/d-oo.&#x | 1 1 0 | * 2n  * * * * | 0 1 1 0 0  1 0 0 0 | 1 0 1 1 0
o.o-n/d-o.o&#x | 1 0 1 | *  * 2n * * * | 0 0 0 1 1  1 0 0 0 | 0 1 1 1 0
...     .x.    | 0 2 0 | *  *  * n * * | 0 0 1 0 0  0 1 1 0 | 1 0 0 1 1
.oo-n/d-.oo&#x | 0 1 1 | *  *  * * n * | 0 0 0 0 0  2 0 2 0 | 0 0 1 2 1
...     ..x    | 0 0 2 | *  *  * * * n | 0 0 0 0 1  0 0 1 1 | 0 1 0 1 1
---------------+-------+---------------+--------------------+----------
x..-n/d-o..    | n 0 0 | n  0  0 0 0 0 | 1 * * * *  * * * * | 1 1 0 0 0
xo.     ...&#x | 2 1 0 | 1  2  0 0 0 0 | * n * * *  * * * * | 1 0 1 0 0
...     ox.&#x | 1 2 0 | 0  2  0 1 0 0 | * * n * *  * * * * | 1 0 0 1 0
x.o     ...&#x | 2 0 1 | 1  0  2 0 0 0 | * * * n *  * * * * | 0 1 1 0 0
...     o.x&#x | 1 0 2 | 0  0  2 0 0 1 | * * * * n  * * * * | 0 1 0 1 0
ooo-n/d-ooo&#x | 1 1 1 | 0  1  1 0 1 0 | * * * * * 2n * * * | 0 0 1 1 0
.o.-n/d-.x.    | 0 n 0 | 0  0  0 n 0 0 | * * * * *  * 1 * * | 1 0 0 0 1
...     .xx&#x | 0 2 2 | 0  0  0 1 2 1 | * * * * *  * * n * | 0 0 0 1 1
..o-n/d-..x    | 0 0 n | 0  0  0 0 0 n | * * * * *  * * * 1 | 0 1 0 0 1
---------------+-------+---------------+--------------------+----------
xo.-n/d-ox.&#x  n n 0 | n 2n  0 n 0 0 | 1 n n 0 0  0 1 0 0 | 1 * * * *
x.o-n/d-o.x&#x  n 0 n | n  0 2n 0 0 n | 1 0 0 n n  0 0 0 1 | * 1 * * *
xoo     ...&#x  2 1 1 | 1  2  2 0 1 0 | 0 1 0 1 0  2 0 0 0 | * * n * *
...     oxx&#x  1 2 2 | 0  2  2 1 2 1 | 0 0 1 0 1  2 0 1 0 | * * * n *
.oo-n/d-.xx&#x  0 n n | 0  0  0 n n n | 0 0 0 0 0  0 1 n 1 | * * * * 1

xo-n/d-ox ox&#x   → height = sqrt[(1+3 cos(π d/n))/(4+4 cos(π d/n))]
({n/d} || gyro n/d-p)

o.     o. o.    | n  * | 2  4  0 0 | 1  4  2  2 0 0 | 2 2 1 0
.o     .o .o    | * 2n | 0  2  2 1 | 0  1  2  2 1 2 | 1 1 2 1
----------------+------+-----------+----------------+--------
x.     .. ..    | 2  0 | n  *  * * | 1  2  0  0 0 0 | 2 1 0 0
oo-n/d-oo oo&#x | 1  1 | * 4n  * * | 0  1  1  1 0 0 | 1 1 1 0
..     .x ..    | 0  2 | *  * 2n * | 0  0  1  0 1 1 | 1 0 1 1
..     .. .x    | 0  2 | *  *  * n | 0  0  0  2 0 2 | 0 1 2 1
----------------+------+-----------+----------------+--------
x.-n/d-o. ..    | n  0 | n  0  0 0 | 1  *  *  * * * | 2 0 0 0
xo     .. ..&#x | 2  1 | 1  2  0 0 | * 2n  *  * * * | 1 1 0 0
..     ox ..&#x | 1  2 | 0  2  1 0 | *  * 2n  * * * | 1 0 1 0
..     .. ox&#x | 1  2 | 0  2  0 1 | *  *  * 2n * * | 0 1 1 0
.o-n/d-.x ..    | 0  n | 0  0  n 0 | *  *  *  * 2 * | 1 0 0 1
..     .x .x    | 0  4 | 0  0  2 2 | *  *  *  * * n | 0 0 1 1
----------------+------+-----------+----------------+--------
xo-n/d-ox ..&#x  n  n | n 2n  n 0 | 1  n  n  0 1 0 | 2 * * *
xo     .. ox&#x  2  2 | 1  4  0 1 | 0  2  0  2 0 0 | * n * *
..     ox ox&#x  1  4 | 0  4  2 2 | 0  0  2  2 0 1 | * * n *
.o-n/d-.x .x     0 2n | 0  0 2n n | 0  0  0  0 2 n | * * * 1

{n/d} || n/d-ap   → height = sqrt[(1+3 cos(π d/n))/(2+4 cos(π d/n))]

o..     o..    | n * * | 2  2  2 0 0 0 | 1 2 1 2 1  2 0 0 0 | 1 1 2 1 0
.o.     .o.    | * n * | 0  2  0 2 1 0 | 0 1 2 0 0  2 1 2 0 | 1 0 1 2 1
..o     ..o    | * * n | 0  0  2 0 1 2 | 0 0 0 1 2  2 0 2 1 | 0 1 1 2 1
---------------+-------+---------------+--------------------+----------
x..     ...    | 2 0 0 | n  *  * * * * | 1 1 0 1 0  0 0 0 0 | 1 1 1 0 0
oo.-n/d-oo.&#x | 1 1 0 | * 2n  * * * * | 0 1 1 0 0  1 0 0 0 | 1 0 1 1 0
o.o-n/d-o.o&#x | 1 0 1 | *  * 2n * * * | 0 0 0 1 1  1 0 0 0 | 0 1 1 1 0
...     .x.    | 0 2 0 | *  *  * n * * | 0 0 1 0 0  0 1 1 0 | 1 0 0 1 1
.oo-n/d-.oo&#x | 0 1 1 | *  *  * * n * | 0 0 0 0 0  2 0 2 0 | 0 0 1 2 1
...     ..x    | 0 0 2 | *  *  * * * n | 0 0 0 0 1  0 0 1 1 | 0 1 0 1 1
---------------+-------+---------------+--------------------+----------
x..-n/d-o..    | n 0 0 | n  0  0 0 0 0 | 1 * * * *  * * * * | 1 1 0 0 0
xo.     ...&#x | 2 1 0 | 1  2  0 0 0 0 | * n * * *  * * * * | 1 0 1 0 0
...     ox.&#x | 1 2 0 | 0  2  0 1 0 0 | * * n * *  * * * * | 1 0 0 1 0
x.o     ...&#x | 2 0 1 | 1  0  2 0 0 0 | * * * n *  * * * * | 0 1 1 0 0
...     o.x&#x | 1 0 2 | 0  0  2 0 0 1 | * * * * n  * * * * | 0 1 0 1 0
ooo-n/d-ooo&#x | 1 1 1 | 0  1  1 0 1 0 | * * * * * 2n * * * | 0 0 1 1 0
.o.-n/d-.x.    | 0 n 0 | 0  0  0 n 0 0 | * * * * *  * 1 * * | 1 0 0 0 1
...     .xx&#x | 0 2 2 | 0  0  0 1 2 1 | * * * * *  * * n * | 0 0 0 1 1
..o-n/d-..x    | 0 0 n | 0  0  0 0 0 n | * * * * *  * * * 1 | 0 1 0 0 1
---------------+-------+---------------+--------------------+----------
xo.-n/d-ox.&#x  n n 0 | n 2n  0 n 0 0 | 1 n n 0 0  0 1 0 0 | 1 * * * *
x.o-n/d-o.x&#x  n 0 n | n  0 2n 0 0 n | 1 0 0 n n  0 0 0 1 | * 1 * * *
xoo     ...&#x  2 1 1 | 1  2  2 0 1 0 | 0 1 0 1 0  2 0 0 0 | * * n * *
...     oxx&#x  1 2 2 | 0  2  2 1 2 1 | 0 0 1 0 1  2 0 1 0 | * * * n *
.oo-n/d-.xx&#x  0 n n | 0  0  0 n n n | 0 0 0 0 0  0 1 n 1 | * * * * 1

© 2004-2025
top of page