Acronym tiquithdow
Name (triangle,quith)-disphenoid,
triangle atop fully orthogonal quasitruncated hexahedron
Circumradius 2 sqrt[(11+sqrt(2))/119] = 0.645976
Face vector 27, 111, 195, 175, 81, 17
Confer
general polytopal classes:
segmentopeta  

Incidence matrix according to Dynkin symbol

xo3oo ox4/3ox3oo&#x   → height = sqrt[(12 sqrt(2)-13)/12] = 0.575222
(pyramid product of a triangle and quith)

o.3o. o.4/3o.3o.    | 3  * | 2 24  0  0 | 1 48 12 24 0 0 | 24 24 48  6  8 0 | 12 24 12 16 1 | 6 8 2
.o3.o .o4/3.o3.o    | * 24 | 0  3  1  2 | 0  3  3  6 2 1 |  1  3  6  6  3 1 |  1  2  6  3 3 | 2 1 3
--------------------+------+------------+----------------+------------------+---------------+------
x. .. ..   .. ..    | 2  0 | 3  *  *  * | 1 24  0  0 0 0 | 24 12 24  0  0 0 | 12 24  6  8 0 | 6 8 1
oo3oo oo4/3oo3oo&#x | 1  1 | * 72  *  * | 0  2  1  2 0 0 |  1  2  4  2  1 0 |  1  2  4  2 1 | 2 1 2
.. .. .x   .. ..    | 0  2 | *  * 12  * | 0  0  3  0 2 0 |  0  3  0  6  0 1 |  1  0  6  0 3 | 2 0 3
.. .. ..   .x ..    | 0  2 | *  *  * 24 | 0  0  0  3 1 1 |  0  0  3  3  3 1 |  0  1  3  3 3 | 1 1 3
--------------------+------+------------+----------------+------------------+---------------+------
x.3o. ..   .. ..    | 3  0 | 3  0  0  0 | 1  *  *  * * *  24  0  0  0  0 0 | 12 24  0  0 0 | 6 8 0
xo .. ..   .. ..&#x | 2  1 | 1  2  0  0 | * 72  *  * * * |  1  1  2  0  0 0 |  1  2  2  1 0 | 2 1 1
.. .. ox   .. ..&#x | 1  2 | 0  2  1  0 | *  * 36  * * * |  0  2  0  2  0 0 |  1  0  4  0 1 | 2 0 2
.. .. ..   ox ..&#x | 1  2 | 0  2  0  1 | *  *  * 72 * * |  0  0  2  1  1 0 |  0  1  2  2 1 | 1 1 2
.. .. .x4/3.x ..    | 0  8 | 0  0  4  4 | *  *  *  * 6 * |  0  0  0  3  0 1 |  0  0  3  0 3 | 1 0 3
.. .. ..   .x3.o    | 0  3 | 0  0  0  3 | *  *  *  * * 8 |  0  0  0  0  3 1 |  0  0  0  3 3 | 0 1 3
--------------------+------+------------+----------------+------------------+---------------+------
xo3oo ..   .. ..&#x  3  1 | 3  3  0  0 | 1  3  0  0 0 0 | 24  *  *  *  * * |  1  2  0  0 0 | 2 1 0
xo .. ox   .. ..&#x  2  2 | 1  4  1  0 | 0  2  2  0 0 0 |  * 36  *  *  * * |  1  0  2  0 0 | 2 0 1
xo .. ..   ox ..&#x  2  2 | 1  4  0  1 | 0  2  0  2 0 0 |  *  * 72  *  * * |  0  1  1  1 0 | 1 1 1
.. .. ox4/3ox ..&#x  1  8 | 0  8  4  4 | 0  0  4  4 1 0 |  *  *  * 18  * * |  0  0  2  0 1 | 1 0 2
.. .. ..   ox3oo&#x  1  3 | 0  3  0  3 | 0  0  0  3 0 1 |  *  *  *  * 24 * |  0  0  0  2 1 | 0 1 2
.. .. .x4/3.x3.o     0 24 | 0  0 12 24 | 0  0  0  0 6 8 |  *  *  *  *  * 1 |  0  0  0  0 3 | 0 0 3
--------------------+------+------------+----------------+------------------+---------------+------
xo3oo ox   .. ..&#x  3  2 | 3  6  1  0 | 1  6  3  0 0 0 |  2  3  0  0  0 0 | 12  *  *  * * | 2 0 0
xo3oo ..   ox ..&#x  3  2 | 3  6  0  1 | 1  6  0  3 0 0 |  2  0  3  0  0 0 |  * 24  *  * * | 1 1 0
xo .. ox4/3ox ..&#x  2  8 | 1 16  4  4 | 0  8  8  8 1 0 |  0  4  4  2  0 0 |  *  * 18  * * | 1 0 1
xo .. ..   ox3oo&#x  2  3 | 1  6  0  3 | 0  3  0  6 0 1 |  0  0  3  0  2 0 |  *  *  * 24 * | 0 1 1
.. .. ox4/3ox3oo&#x  1 24 | 0 24 12 24 | 0  0 12 24 6 8 |  0  0  0  6  8 1 |  *  *  *  * 3 | 0 0 2
--------------------+------+------------+----------------+------------------+---------------+------
xo3oo ox4/3ox ..&#x  3  8 | 3 24  4  4 | 1 24 12 12 1 0 |  8 12 12  3  0 0 |  4  4  3  0 0 | 6 * *
xo3oo ..   ox3oo&#x  3  3 | 3  9  0  3 | 1  9  0  9 0 1 |  3  0  9  0  3 0 |  0  3  0  3 0 | * 8 *
xo .. ox4/3ox3oo&#x  2 24 | 1 48 12 24 | 0 24 24 48 6 8 |  0 12 24 12 16 1 |  0  0  6  8 2 | * * 3

© 2004-2025
top of page