Acronym | tiquithdow |
Name |
(triangle,quith)-disphenoid, triangle atop fully orthogonal quasitruncated hexahedron |
Circumradius | 2 sqrt[(11+sqrt(2))/119] = 0.645976 |
Face vector | 27, 111, 195, 175, 81, 17 |
Confer |
|
Incidence matrix according to Dynkin symbol
xo3oo ox4/3ox3oo&#x → height = sqrt[(12 sqrt(2)-13)/12] = 0.575222 (pyramid product of a triangle and quith) o.3o. o.4/3o.3o. | 3 * | 2 24 0 0 | 1 48 12 24 0 0 | 24 24 48 6 8 0 | 12 24 12 16 1 | 6 8 2 .o3.o .o4/3.o3.o | * 24 | 0 3 1 2 | 0 3 3 6 2 1 | 1 3 6 6 3 1 | 1 2 6 3 3 | 2 1 3 --------------------+------+------------+----------------+------------------+---------------+------ x. .. .. .. .. | 2 0 | 3 * * * | 1 24 0 0 0 0 | 24 12 24 0 0 0 | 12 24 6 8 0 | 6 8 1 oo3oo oo4/3oo3oo&#x | 1 1 | * 72 * * | 0 2 1 2 0 0 | 1 2 4 2 1 0 | 1 2 4 2 1 | 2 1 2 .. .. .x .. .. | 0 2 | * * 12 * | 0 0 3 0 2 0 | 0 3 0 6 0 1 | 1 0 6 0 3 | 2 0 3 .. .. .. .x .. | 0 2 | * * * 24 | 0 0 0 3 1 1 | 0 0 3 3 3 1 | 0 1 3 3 3 | 1 1 3 --------------------+------+------------+----------------+------------------+---------------+------ x.3o. .. .. .. | 3 0 | 3 0 0 0 | 1 * * * * * ♦ 24 0 0 0 0 0 | 12 24 0 0 0 | 6 8 0 xo .. .. .. ..&#x | 2 1 | 1 2 0 0 | * 72 * * * * | 1 1 2 0 0 0 | 1 2 2 1 0 | 2 1 1 .. .. ox .. ..&#x | 1 2 | 0 2 1 0 | * * 36 * * * | 0 2 0 2 0 0 | 1 0 4 0 1 | 2 0 2 .. .. .. ox ..&#x | 1 2 | 0 2 0 1 | * * * 72 * * | 0 0 2 1 1 0 | 0 1 2 2 1 | 1 1 2 .. .. .x4/3.x .. | 0 8 | 0 0 4 4 | * * * * 6 * | 0 0 0 3 0 1 | 0 0 3 0 3 | 1 0 3 .. .. .. .x3.o | 0 3 | 0 0 0 3 | * * * * * 8 | 0 0 0 0 3 1 | 0 0 0 3 3 | 0 1 3 --------------------+------+------------+----------------+------------------+---------------+------ xo3oo .. .. ..&#x ♦ 3 1 | 3 3 0 0 | 1 3 0 0 0 0 | 24 * * * * * | 1 2 0 0 0 | 2 1 0 xo .. ox .. ..&#x ♦ 2 2 | 1 4 1 0 | 0 2 2 0 0 0 | * 36 * * * * | 1 0 2 0 0 | 2 0 1 xo .. .. ox ..&#x ♦ 2 2 | 1 4 0 1 | 0 2 0 2 0 0 | * * 72 * * * | 0 1 1 1 0 | 1 1 1 .. .. ox4/3ox ..&#x ♦ 1 8 | 0 8 4 4 | 0 0 4 4 1 0 | * * * 18 * * | 0 0 2 0 1 | 1 0 2 .. .. .. ox3oo&#x ♦ 1 3 | 0 3 0 3 | 0 0 0 3 0 1 | * * * * 24 * | 0 0 0 2 1 | 0 1 2 .. .. .x4/3.x3.o ♦ 0 24 | 0 0 12 24 | 0 0 0 0 6 8 | * * * * * 1 | 0 0 0 0 3 | 0 0 3 --------------------+------+------------+----------------+------------------+---------------+------ xo3oo ox .. ..&#x ♦ 3 2 | 3 6 1 0 | 1 6 3 0 0 0 | 2 3 0 0 0 0 | 12 * * * * | 2 0 0 xo3oo .. ox ..&#x ♦ 3 2 | 3 6 0 1 | 1 6 0 3 0 0 | 2 0 3 0 0 0 | * 24 * * * | 1 1 0 xo .. ox4/3ox ..&#x ♦ 2 8 | 1 16 4 4 | 0 8 8 8 1 0 | 0 4 4 2 0 0 | * * 18 * * | 1 0 1 xo .. .. ox3oo&#x ♦ 2 3 | 1 6 0 3 | 0 3 0 6 0 1 | 0 0 3 0 2 0 | * * * 24 * | 0 1 1 .. .. ox4/3ox3oo&#x ♦ 1 24 | 0 24 12 24 | 0 0 12 24 6 8 | 0 0 0 6 8 1 | * * * * 3 | 0 0 2 --------------------+------+------------+----------------+------------------+---------------+------ xo3oo ox4/3ox ..&#x ♦ 3 8 | 3 24 4 4 | 1 24 12 12 1 0 | 8 12 12 3 0 0 | 4 4 3 0 0 | 6 * * xo3oo .. ox3oo&#x ♦ 3 3 | 3 9 0 3 | 1 9 0 9 0 1 | 3 0 9 0 3 0 | 0 3 0 3 0 | * 8 * xo .. ox4/3ox3oo&#x ♦ 2 24 | 1 48 12 24 | 0 24 24 48 6 8 | 0 12 24 12 16 1 | 0 0 6 8 2 | * * 3
© 2004-2025 | top of page |