Acronym n/d-daf
Name n/d-duoantifastegium,
(2,n)-duoantiwedge,
n/d-p atop bidual n/d-p
Lace hyper city
in approx. ASCII-art
```x-n/d-o
x-n/d-o

o-n/d-x

o-n/d-x
```
(disphenoid in configuration space)
Especially
3 4 5 6 7 8 9 10 n/d-daf
triddaf squiddaf piddaf hiddaf hedaf odaf edaf deddaf 1
- steddaf
(stiddaf,
stardaf)
- sithedaf - stendaf - 2
- gisthedaf stoddaf - stidadaf 3
- gistendaf - 4
Confer
more general:
(n,m)-dafup
general polytopal classes:
segmentotera   scaliform
External

These all are scaliform polytera. They even are convex if d=1. – The boundary case n/d=2 not only would provide different incidences than the general matrix given below (degenerate {n/d}-gons), it even itself would become dimensionally degenerate. In fact it happens to be {4} || perp {4}, the hull of which is just hex.

Incidence matrix according to Dynkin symbol

```xo ox xo-n/d-ox&#x   (n > 2d)   → height = sqrt([1-1/(1+cos(pi d/n))]/2)
(n/d-p || bidual n/d-p)

o. o. o.-n/d-o.    | 2n  * | 1  2  4 0  0 | 2 1  4  2  4  2 0 0 | 1  2  4  2  2  1 2 0 | 2 1 2 1
.o .o .o-n/d-.o    |  * 2n | 0  0  4 1  2 | 0 0  2  4  2  4 2 1 | 0  2  1  2  2  4 2 1 | 1 2 1 2
-------------------+-------+--------------+---------------------+----------------------+--------
x. .. ..     ..    |  2  0 | n  *  * *  * | 2 0  4  0  0  0 0 0 | 1  2  4  2  0  0 0 0 | 2 1 2 0
.. .. x.     ..    |  2  0 | * 2n  * *  * | 1 1  0  0  2  0 0 0 | 1  0  2  0  1  0 2 0 | 1 0 2 1
oo oo oo-n/d-oo&#x |  1  1 | *  * 8n *  * | 0 0  1  1  1  1 0 0 | 0  1  1  1  1  1 1 0 | 1 1 1 1
.. .x ..     ..    |  0  2 | *  *  * n  * | 0 0  0  4  0  0 2 0 | 0  2  0  0  2  4 0 1 | 1 2 0 2
.. .. ..     .x    |  0  2 | *  *  * * 2n | 0 0  0  0  0  2 1 1 | 0  0  0  1  0  2 2 1 | 0 1 1 2
-------------------+-------+--------------+---------------------+----------------------+--------
x. .. x.     ..    |  4  0 | 2  2  0 0  0 | n *  *  *  *  * * * | 1  0  2  0  0  0 0 0 | 1 0 2 0
.. .. x.-n/d-o.    |  n  0 | 0  n  0 0  0 | * 2  *  *  *  * * * | 1  0  0  0  0  0 2 0 | 0 0 2 1
xo .. ..     ..&#x |  2  1 | 1  0  2 0  0 | * * 4n  *  *  * * * | 0  1  1  1  0  0 0 0 | 1 1 1 0
.. ox ..     ..&#x |  1  2 | 0  0  2 1  0 | * *  * 4n  *  * * * | 0  1  0  0  1  1 0 0 | 1 1 0 1
.. .. xo     ..&#x |  2  1 | 0  1  2 0  0 | * *  *  * 4n  * * * | 0  0  1  0  1  0 1 0 | 1 0 1 1
.. .. ..     ox&#x |  1  2 | 0  0  2 0  1 | * *  *  *  * 4n * * | 0  0  0  1  0  1 1 0 | 0 1 1 1
.. .x ..     .x    |  0  4 | 0  0  0 2  2 | * *  *  *  *  * n * | 0  0  0  0  0  2 0 1 | 0 1 0 2
.. .. .o-n/d-.x    |  0  n | 0  0  0 0  n | * *  *  *  *  * * 2 | 0  0  0  0  0  0 2 1 | 0 0 1 2
-------------------+-------+--------------+---------------------+----------------------+--------
x. .. x.-n/d-o.    ♦ 2n  0 | n 2n  0 0  0 | n 2  0  0  0  0 0 0 | 1  *  *  *  *  * * * | 0 0 2 0
xo ox ..     ..&#x ♦  2  2 | 1  0  4 1  0 | 0 0  2  2  0  0 0 0 | * 2n  *  *  *  * * * | 1 1 0 0
xo .. xo     ..&#x ♦  4  1 | 2  2  4 0  0 | 1 0  2  0  2  0 0 0 | *  * 2n  *  *  * * * | 1 0 1 0
xo .. ..     ox&#x ♦  2  2 | 1  0  4 0  1 | 0 0  2  0  0  2 0 0 | *  *  * 2n  *  * * * | 0 1 1 0
.. ox xo     ..&#x ♦  2  2 | 0  1  4 1  0 | 0 0  0  2  2  0 0 0 | *  *  *  * 2n  * * * | 1 0 0 1
.. ox ..     ox&#x ♦  1  4 | 0  0  4 2  2 | 0 0  0  2  0  2 1 0 | *  *  *  *  * 2n * * | 0 1 0 1
.. .. xo-n/d-ox&#x ♦  n  n | 0  n 2n 0  n | 0 1  0  0  n  n 0 1 | *  *  *  *  *  * 4 * | 0 0 1 1
.. .x .o-n/d-.x    ♦  0 2n | 0  0  0 n 2n | 0 0  0  0  0  0 n 2 | *  *  *  *  *  * * 1 | 0 0 0 2
-------------------+-------+--------------+---------------------+----------------------+--------
xo ox xo     ..&#x ♦  4  2 | 2  2  8 1  0 | 1 0  4  4  4  0 0 0 | 0  2  2  0  2  0 0 0 | n * * *
xo ox ..     ox&#x ♦  2  4 | 1  0  8 2  2 | 0 0  4  4  0  4 1 0 | 0  2  0  2  0  2 0 0 | * n * *
xo .. xo-n/d-ox&#x ♦ 2n  n | n 2n 4n 0  n | n 2 2n  0 2n 2n 0 1 | 1  0  n  n  0  0 2 0 | * * 2 *
.. ox xo-n/d-ox&#x ♦  n 2n | 0  n 4n n 2n | 0 1  0 2n 2n 2n n 2 | 0  0  0  0  n  n 2 1 | * * * 2
```
```or
o. o. o.-n/d-o.    & | 4n |  1  2  4 |  2 1  6  6 | 1  2  5  4 2 |  3 3
---------------------+----+----------+------------+--------------+-----
x. .. ..     ..    & |  2 | 2n  *  * |  2 0  4  0 | 1  2  4  2 0 |  3 2
.. .. x.     ..    & |  2 |  * 4n  * |  1 1  0  2 | 1  0  2  1 2 |  1 3
oo oo oo-n/d-oo&#x   |  2 |  *  * 8n |  0 0  2  2 | 0  1  2  2 1 |  2 2
---------------------+----+----------+------------+--------------+-----
x. .. x.     ..    & |  4 |  2  2  0 | 2n *  *  * | 1  0  2  0 0 |  1 2
.. .. x.-n/d-o.    & |  n |  0  n  0 |  * 4  *  * | 1  0  0  0 2 |  0 3
xo .. ..     ..&#x & |  3 |  1  0  2 |  * * 8n  * | 0  1  1  1 0 |  2 1
.. .. xo     ..&#x & |  3 |  0  1  2 |  * *  * 8n | 0  0  1  1 1 |  1 2
---------------------+----+----------+------------+--------------+-----
x. .. x.-n/d-o.    & ♦ 2n |  n 2n  0 |  n 2  0  0 | 2  *  *  * * |  0 2
xo ox ..     ..&#x   ♦  4 |  2  0  4 |  0 0  4  0 | * 2n  *  * * |  2 0
xo .. xo     ..&#x & ♦  5 |  2  2  4 |  1 0  2  2 | *  * 4n  * * |  1 1
xo .. ..     ox&#x & ♦  4 |  1  1  4 |  0 0  2  2 | *  *  * 4n * |  1 1
.. .. xo-n/d-ox&#x   ♦ 2n |  0 2n 2n |  0 2  0 2n | *  *  *  * 4 |  0 2
---------------------+----+----------+------------+--------------+-----
xo ox xo     ..&#x & ♦  6 |  3  2  8 |  1 0  8  4 | 0  2  2  2 0 | 2n *
xo .. xo-n/d-ox&#x & ♦ 3n |  n 3n 4n |  n n 2n 4n | 1  0  n  n 2 |  * 4
```