Acronym | ... |
Name | hyperbolic o4s4o3*a4s4o3*a tetracomb |
Circumradius | 1/sqrt(-16) = 0.25 i |
Confer |
|
This hypercompact hyperbolic tetracomb uses hihexat in the sense of an infinite bollohedron and squat in the sense of an infinite horohedron as cell. Further o3o3o4s4*b and s4o3o4s4*b get being used as infinite bollochora.
This hemiation indeed becomes scaliform, because all edges by mere alternation already do have the same size: diagonals of either of the former squares. I.e. no afterwards edge resizements are required (except of a homogenuous global scaling). However, because of the introduction of the former vertex figure as a further facet, which here just is scaliform in turn, it cannot become uniform.
Incidence matrix according to Dynkin symbol
o4s4o3*a4s4o3*a (N,M,K,L,P → ∞) demi( . . . . . ) | 4NMKLP | 24 12 24 | 48 48 24 72 | 8 12 8 24 72 24 24 | 8 2 6 24 --------------------------+--------+-------------------------+---------------------------------+-----------------------------------------------------+----------------------- o4s . . . ) & | 2 | 48NMKLP * * | 2 2 2 0 | 1 1 1 0 4 2 0 | 2 1 0 2 . s4o . . ) & | 2 | * 24NMKLP * | 4 0 0 4 | 2 0 0 2 4 2 2 | 2 1 1 2 . s 2 s . ) | 2 | * * 48NMKLP | 0 2 0 4 | 0 1 0 2 4 0 2 | 2 0 1 2 --------------------------+--------+-------------------------+---------------------------------+-----------------------------------------------------+----------------------- sefa( o4s4o3*a . . ) & | 6 | 3 3 0 | 32NMKLP * * * | 1 0 0 0 1 1 0 | 1 1 0 1 sefa( o4s . *a4s . ) | 4 | 2 0 2 | * 48NMKLP * * | 0 1 0 0 2 0 0 | 2 0 0 1 sefa( o4s . . o3*a ) & | 3 | 3 0 0 | * * 32NMKLP * | 0 0 1 0 1 1 0 | 1 1 0 1 sefa( . s4o s . ) & | 3 | 0 1 2 | * * * 96NMKLP | 0 0 0 1 1 0 1 | 1 0 1 1 --------------------------+--------+-------------------------+---------------------------------+-----------------------------------------------------+----------------------- o4s4o3*a . . & ♦ 2M | 3M 3M 0 | 2M 0 0 0 | 16NKLP * * * * * * | 1 1 0 0 o4s . *a4s . ♦ 2K | 2K 0 2K | 0 2K 0 0 | * 24NMLP * * * * * | 2 0 0 0 o4s . . o3*a & ♦ 4 | 6 0 0 | 0 0 4 0 | * * 8NMKLP * * * * | 1 1 0 0 . s4o s . & ♦ 4 | 0 2 4 | 0 0 0 4 | * * * 24NMKLP * * * | 1 0 1 0 sefa( o4s4o3*a4s . ) & ♦ 9 | 6 3 6 | 1 3 1 3 | * * * * 32NMKLP * * | 1 0 0 1 sefa( o4s4o3*a . o3*a ) & ♦ 12 | 12 6 0 | 4 0 4 0 | * * * * * 8NMKLP * | 0 1 0 1 sefa( . s4o 2 s4o ) ♦ 4 | 0 2 4 | 0 0 0 4 | * * * * * * 24NMKLP | 0 0 1 1 --------------------------+--------+-------------------------+---------------------------------+-----------------------------------------------------+----------------------- o4s4o3*a4s . & ♦ 4MKL | 12MKL 6MKL 12MKL | 4MKL 12MKL 4MKL 12MKL | 2KL 6ML MKL 3MKL 4MKL 0 0 | 8NP * * * o4s4o3*a . o3*a & ♦ MP | 6MP 3MP 0 | 4MP 0 4MP 0 | 2P 0 MP 0 0 MP 0 | * 8NKL * * . s4o 2 s4o ♦ 8 | 0 8 16 | 0 0 0 32 | 0 0 0 8 0 0 8 | * * 3NMKLP * sefa( o4s4o3*a4s4o3*a ) ♦ 24 | 24 12 24 | 8 12 8 24 | 0 0 0 0 8 2 6 | * * * 4NMKLP starting figure: o4x4o3*a4x4o3*a
© 2004-2025 | top of page |