Acronym gisdiddit
Name (gisdid,gisdid)-duotegum,
gisdid duotegum,
tegum product of 2 great snub dodekicosidodecahedra
Circumradius 1/sqrt(2) = 0.707107
Confer
general polytopal classes:
scaliform  

Due to the matching circumradii of the tegum product factors the lacing edges of this polypeton are of unit size too. Accordingly it qualifies as a 6D non-convex scaliform.


Incidence matrix

(tegum product of 2 gisdids)

120 |   4   2   60 |  2   3   360  1  180 |  144  240   480   480   80  120 |  336  168   600  300  200  100 |  48  192  64  180  120  20
----+--------------+----------------------+---------------------------------+--------------------------------+---------------------------
  2 | 240   *    * |  1   1    60  0    0 |   60   60   120    60    0    0 |  144   60   180   60   20    0 |  24   84  20   60   20   0  {5/2} edges of gisdid (*)
  2 |   * 120    * |  0   1     0  1   60 |    0   60     0   120   60   60 |    0   24   120  120  120   80 |   0   24  24   60   80  20  non-{5/2} edges of gisdid
  2 |   *   * 3600 |  0   0     8  0    4 |    4    6    16    16    2    4 |   16    8    24   12    8    4 |   4   12   4   15   10   1  lacing edges
----+--------------+----------------------+---------------------------------+--------------------------------+---------------------------
  5 |   5   0    0 | 48   *     *  *    * |   60    0     0     0    0    0 |  120   60     0    0    0    0 |  24   60  20    0    0   0  {5/2} (*)
  3 |   2   1    0 |  * 120     *  *    * |    0   60     0     0    0    0 |    0    0   120   60    0    0 |   0   24   0   60   20   0
  3 |   1   0    2 |  *   * 14400  *    * |    1    1     4     2    0    0 |    6    2     7    2    1    0 |   2    5   1    3    1   0
  3 |   0   3    0 |  *   *     * 40    * |    0    0     0     0   60    0 |    0    0     0    0  120   60 |   0    0  24    0   60  20
  3 |   0   1    2 |  *   *     *  * 7200 |    0    1     0     4    1    2 |    0    2     4    5    4    3 |   0    2   2    3    4   1
----+--------------+----------------------+---------------------------------+--------------------------------+---------------------------
  6 |   5   0    5 |  1   0     5  0    0 | 2880    *     *     *    *    * |    4    2     0    0    0    0 |   2    3   1    0    0   0  stappy
  4 |   2   1    3 |  0   1     2  0    1 |    * 7200     *     *    *    * |    0    0     4    2    0    0 |   0    2   0    3    1   0  tet
  4 |   2   0    4 |  0   0     4  0    0 |    *    * 14400     *    *    * |    2    0     2    0    0    0 |   1    2   0    1    0   0  tet
  4 |   1   1    4 |  0   0     2  0    2 |    *    *     * 14400    *    * |    0    1     1    1    1    0 |   0    1   1    1    1   0  tet
  4 |   0   3    3 |  0   0     0  1    3 |    *    *     *     * 2400    * |    0    0     0    0    4    2 |   0    0   2    0    3   1  tet
  4 |   0   2    4 |  0   0     0  0    4 |    *    *     *     *    * 3600 |    0    0     0    2    0    2 |   0    0   0    1    2   1  tet
----+--------------+----------------------+---------------------------------+--------------------------------+---------------------------
  7 |   6   0   10 |  1   0    15  0    0 |    2    0     5     0    0    0 | 5760    *     *    *    *    * |   1    1   0    0    0   0  stasc
  7 |   5   1   10 |  1   0    10  0    5 |    2    0     0     5    0    0 |    * 2880     *    *    *    * |   0    1   1    0    0   0  stasc
  5 |   3   1    6 |  0   1     7  0    2 |    0    2     2     1    0    0 |    *    * 14400    *    *    * |   0    1   0    1    0   0  pen
  5 |   2   2    6 |  0   1     4  0    5 |    0    2     0     2    0    1 |    *    *     * 7200    *    * |   0    0   0    1    1   0  pen
  5 |   1   3    6 |  0   0     3  1    6 |    0    0     0     3    2    0 |    *    *     *    * 4800    * |   0    0   1    0    1   0  pen
  5 |   0   4    6 |  0   0     0  1    9 |    0    0     0     0    2    3 |    *    *     *    *    * 2400 |   0    0   0    0    1   1  pen
----+--------------+----------------------+---------------------------------+--------------------------------+---------------------------
 10 |  10   0   25 |  2   0    50  0    0 |   10    0    25     0    0    0 |   10    0     0    0    0    0 | 576    *   *    *    *   *  stadow
  8 |   7   1   15 |  1   1    25  0    5 |    3    5    10     5    0    0 |    2    1     5    0    0    0 |   * 2880   *    *    *   *  state
  8 |   5   3   15 |  1   0    15  1   15 |    3    0     0    15    5    0 |    0    3     0    0    5    0 |   *    * 960    *    *   *  state
  6 |   4   2   15 |  0   2    12  0    6 |    0    6     4     4    0    1 |    0    0     4    2    0    0 |   *    *   * 3600    *   *  hix
  6 |   2   4   15 |  0   1     6  1   12 |    0    3     0     6    3    3 |    0    0     0    3    2    1 |   *    *   *    * 2400   *  hix
  6 |   0   6    9 |  0   0     0  2   18 |    0    0     0     0    6    9 |    0    0     0    0    0    6 |   *    *   *    *    * 400  hix

(*) abstract polytopal equivalence of the pro- and retrograde pentagrammal sides is being applied in here additionally

© 2004-2022
top of page