Acronym ticagirco, K-4.128
Name truncated cube atop great rhombicuboctahedron,
truncated-cubical cap of prismatorhombated hexadecachoron,
cuboctahedral supra-cap of small rhombated icositetrachoron
Segmentochoron display
Circumradius sqrt[4+2 sqrt(2)] = 2.613126
Lace city
in approx. ASCII-art
    x4x w4o  w4o x4x    
                        
x4x x4u w4x  w4x x4u x4x
            x3x
               
               
o3x            
            x3w
               
               
o3w            		with
               		X=2x+q=x+w
               
            u3w
               
               
x3w            
            X3x
               
            x3X
w3x            
               
               
            w3u
               
               
w3o            
               
               
            w3x
x3o            
               
               
            x3x
Dihedral angles
  • at {3} between tricu and trip:   150°
  • at {4} between op and trip:   arccos[-sqrt(2/3)] = 144.735610°
  • at {8} between op and tic:   135°
  • at {4} between op and tricu:   135°
  • at {3} between tic and tricu:   120°
  • at {6} between girco and tricu:   60°
  • at {4} between girco and trip:   arccos[1/sqrt(3)] = 54.735610°
  • at {8} between girco and op:   45°
Face vector 72, 156, 112, 28
Confer
uniform relatives:
proh   srico  
related CRFs:
qo ox3xx4xx&#zx   wx ox3xx4xx&#zx  
general polytopal classes:
segmentochora  
External
links
polytopewiki  

As abstract polytope ticagirco is isomorphic to quithaquitco, thereby replacing octagons by octagrams, as well as tic by quith, op by stop, and girco by quitco.


Incidence matrix according to Dynkin symbol

ox3xx4xx&#x   → height = 1/sqrt(2) = 0.707107
(tic || girco)

o.3o.4o.    | 24  * |  2  1  2  0  0  0 | 1 2  1  2  2 0  0 0 | 1 1  1 2 0
.o3.o4.o    |  * 48 |  0  0  1  1  1  1 | 0 0  1  1  1 1  1 1 | 0 1  1 1 1
------------+-------+-------------------+---------------------+-----------
.. x. ..    |  2  0 | 24  *  *  *  *  * | 1 1  0  1  0 0  0 0 | 1 1  0 1 0
.. .. x.    |  2  0 |  * 12  *  *  *  * | 0 2  0  0  2 0  0 0 | 1 0  1 2 0
oo3oo4oo&#x |  1  1 |  *  * 48  *  *  * | 0 0  1  1  1 0  0 0 | 0 1  1 1 0
.x .. ..    |  0  2 |  *  *  * 24  *  * | 0 0  1  0  0 1  1 0 | 0 1  1 0 1
.. .x ..    |  0  2 |  *  *  *  * 24  * | 0 0  0  1  0 1  0 1 | 0 1  0 1 1
.. .. .x    |  0  2 |  *  *  *  *  * 24 | 0 0  0  0  1 0  1 1 | 0 0  1 1 1
------------+-------+-------------------+---------------------+-----------
o.3x. ..    |  3  0 |  3  0  0  0  0  0 | 8 *  *  *  * *  * * | 1 1  0 0 0
.. x.4x.    |  8  0 |  4  4  0  0  0  0 | * 6  *  *  * *  * * | 1 0  0 1 0
ox .. ..&#x |  1  2 |  0  0  2  1  0  0 | * * 24  *  * *  * * | 0 1  1 0 0
.. xx ..&#x |  2  2 |  1  0  2  0  1  0 | * *  * 24  * *  * * | 0 1  0 1 0
.. .. xx&#x |  2  2 |  0  1  2  0  0  1 | * *  *  * 24 *  * * | 0 0  1 1 0
.x3.x ..    |  0  6 |  0  0  0  3  3  0 | * *  *  *  * 8  * * | 0 1  0 0 1
.x .. .x    |  0  4 |  0  0  0  2  0  2 | * *  *  *  * * 12 * | 0 0  1 0 1
.. .x4.x    |  0  8 |  0  0  0  0  4  4 | * *  *  *  * *  * 6 | 0 0  0 1 1
------------+-------+-------------------+---------------------+-----------
o.3x.4x.     24  0 | 24 12  0  0  0  0 | 8 6  0  0  0 0  0 0 | 1 *  * * *
ox3xx ..&#x   3  6 |  3  0  6  3  3  0 | 1 0  3  3  0 1  0 0 | * 8  * * *
ox .. xx&#x   2  4 |  0  1  4  2  0  2 | 0 0  2  0  2 0  1 0 | * * 12 * *
.. xx4xx&#x   8  8 |  4  4  8  0  4  4 | 0 1  0  4  4 0  0 1 | * *  * 6 *
.x3.x4.x      0 48 |  0  0  0 24 24 24 | 0 0  0  0  0 8 12 6 | * *  * * 1

© 2004-2024
top of page