Acronym | sphiddix | |||||||||||||||||||||
Name | small prismatohecatonicosadishexacosachoron | |||||||||||||||||||||
Circumradius | sqrt[25+10 sqrt(5)] = 6.881910 | |||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| |||||||||||||||||||||
Face vector | 7200, 18000, 12240, 2040 | |||||||||||||||||||||
Confer |
| |||||||||||||||||||||
External links |
As abstract polytope sphiddix is isomorphic to giphiddix, thereby replacing pentagrams by pentagons, resp. stip by pip and siid by giid
Incidence matrix according to Dynkin symbol
x3x3x5/2o3*b . . . . | 7200 | 1 2 2 | 2 2 2 1 1 | 2 1 1 1 -------------+------+----------------+--------------------------+---------------- x . . . | 2 | 3600 * * | 2 2 0 0 0 | 2 1 1 0 . x . . | 2 | * 7200 * | 1 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 7200 | 0 1 1 0 1 | 1 0 1 1 -------------+------+----------------+--------------------------+---------------- x3x . . | 6 | 3 3 0 | 2400 * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 | * 3600 * * * | 1 0 1 0 . x3x . | 6 | 0 3 3 | * * 2400 * * | 1 0 0 1 . x . o3*b | 3 | 0 3 0 | * * * 2400 * | 0 1 0 1 . . x5/2o | 5 | 0 0 5 | * * * * 1440 | 0 0 1 1 -------------+------+----------------+--------------------------+---------------- x3x3x . ♦ 24 | 12 12 12 | 4 6 4 0 0 | 600 * * * x3x . o3*b ♦ 12 | 6 12 0 | 4 0 0 4 0 | * 600 * * x . x5/2o ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 720 * . x3x5/2o3*b ♦ 60 | 0 60 60 | 0 0 20 20 12 | * * * 120
x3x3x5/3o3/2*b . . . . | 7200 | 1 2 2 | 2 2 2 1 1 | 2 1 1 1 ---------------+------+----------------+--------------------------+---------------- x . . . | 2 | 3600 * * | 2 2 0 0 0 | 2 1 1 0 . x . . | 2 | * 7200 * | 1 0 1 1 0 | 1 1 0 1 . . x . | 2 | * * 7200 | 0 1 1 0 1 | 1 0 1 1 ---------------+------+----------------+--------------------------+---------------- x3x . . | 6 | 3 3 0 | 2400 * * * * | 1 1 0 0 x . x . | 4 | 2 0 2 | * 3600 * * * | 1 0 1 0 . x3x . | 6 | 0 3 3 | * * 2400 * * | 1 0 0 1 . x . o3/2*b | 3 | 0 3 0 | * * * 2400 * | 0 1 0 1 . . x5/3o | 5 | 0 0 5 | * * * * 1440 | 0 0 1 1 ---------------+------+----------------+--------------------------+---------------- x3x3x . ♦ 24 | 12 12 12 | 4 6 4 0 0 | 600 * * * x3x . o3/2*b ♦ 12 | 6 12 0 | 4 0 0 4 0 | * 600 * * x . x5/3o ♦ 10 | 5 0 10 | 0 5 0 0 2 | * * 720 * . x3x5/3o3/2*b ♦ 60 | 0 60 60 | 0 0 20 20 12 | * * * 120
x3x3o5β both( . . . . ) | 7200 | 1 2 2 | 2 1 1 2 2 | 1 1 1 2 ----------------+------+----------------+--------------------------+---------------- both( x . . . ) | 2 | 3600 * * | 2 0 0 2 0 | 1 1 0 2 both( . x . . ) | 2 | * 7200 * | 1 1 0 0 1 | 1 0 1 1 sefa( . . o5β ) | 2 | * * 7200 | 0 0 1 1 1 | 0 1 1 1 ----------------+------+----------------+--------------------------+---------------- both( x3x . . ) | 6 | 3 3 0 | 2400 * * * * | 1 0 0 1 both( . x3o . ) | 3 | 0 3 0 | * 2400 * * * | 1 0 1 0 . . o5β ♦ 5 | 0 0 5 | * * 1440 * * | 0 1 1 0 sefa( x 2 o5β ) | 4 | 2 0 2 | * * * 3600 * | 0 1 0 1 sefa( . x3o5β ) | 6 | 0 3 3 | * * * * 2400 | 0 0 1 1 ----------------+------+----------------+--------------------------+---------------- both( x3x3o . ) ♦ 12 | 6 12 0 | 4 4 0 0 0 | 600 * * * x 2 o5β ♦ 10 | 5 0 10 | 0 0 2 5 0 | * 720 * * . x3o5β ♦ 60 | 0 60 60 | 0 20 12 0 20 | * * 120 * sefa( x3x3o5β ) ♦ 24 | 12 12 12 | 4 0 0 6 4 | * * * 600 starting figure: x3x3o5x
© 2004-2024 | top of page |