Acronym sphiddix
Name small prismatohecatonicosadishexacosachoron
Circumradius sqrt[25+10 sqrt(5)] = 6.881910
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: grid sidditdid siid stip toe tut
sphiddix 00120720600600
sixipady 12012007200600
& others)
Face vector 7200, 18000, 12240, 2040
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope sphiddix is isomorphic to giphiddix, thereby replacing pentagrams by pentagons, resp. stip by pip and siid by giid


Incidence matrix according to Dynkin symbol

x3x3x5/2o3*b

. . .   .    | 7200 |    1    2    2 |    2    2    2    1    1 |   2   1   1   1
-------------+------+----------------+--------------------------+----------------
x . .   .    |    2 | 3600    *    * |    2    2    0    0    0 |   2   1   1   0
. x .   .    |    2 |    * 7200    * |    1    0    1    1    0 |   1   1   0   1
. . x   .    |    2 |    *    * 7200 |    0    1    1    0    1 |   1   0   1   1
-------------+------+----------------+--------------------------+----------------
x3x .   .    |    6 |    3    3    0 | 2400    *    *    *    * |   1   1   0   0
x . x   .    |    4 |    2    0    2 |    * 3600    *    *    * |   1   0   1   0
. x3x   .    |    6 |    0    3    3 |    *    * 2400    *    * |   1   0   0   1
. x .   o3*b |    3 |    0    3    0 |    *    *    * 2400    * |   0   1   0   1
. . x5/2o    |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
-------------+------+----------------+--------------------------+----------------
x3x3x   .       24 |   12   12   12 |    4    6    4    0    0 | 600   *   *   *
x3x .   o3*b    12 |    6   12    0 |    4    0    0    4    0 |   * 600   *   *
x . x5/2o       10 |    5    0   10 |    0    5    0    0    2 |   *   * 720   *
. x3x5/2o3*b    60 |    0   60   60 |    0    0   20   20   12 |   *   *   * 120

x3x3x5/3o3/2*b

. . .   .      | 7200 |    1    2    2 |    2    2    2    1    1 |   2   1   1   1
---------------+------+----------------+--------------------------+----------------
x . .   .      |    2 | 3600    *    * |    2    2    0    0    0 |   2   1   1   0
. x .   .      |    2 |    * 7200    * |    1    0    1    1    0 |   1   1   0   1
. . x   .      |    2 |    *    * 7200 |    0    1    1    0    1 |   1   0   1   1
---------------+------+----------------+--------------------------+----------------
x3x .   .      |    6 |    3    3    0 | 2400    *    *    *    * |   1   1   0   0
x . x   .      |    4 |    2    0    2 |    * 3600    *    *    * |   1   0   1   0
. x3x   .      |    6 |    0    3    3 |    *    * 2400    *    * |   1   0   0   1
. x .   o3/2*b |    3 |    0    3    0 |    *    *    * 2400    * |   0   1   0   1
. . x5/3o      |    5 |    0    0    5 |    *    *    *    * 1440 |   0   0   1   1
---------------+------+----------------+--------------------------+----------------
x3x3x   .         24 |   12   12   12 |    4    6    4    0    0 | 600   *   *   *
x3x .   o3/2*b    12 |    6   12    0 |    4    0    0    4    0 |   * 600   *   *
x . x5/3o         10 |    5    0   10 |    0    5    0    0    2 |   *   * 720   *
. x3x5/3o3/2*b    60 |    0   60   60 |    0    0   20   20   12 |   *   *   * 120

x3x3o5β

both( . . . . ) | 7200 |    1    2    2 |    2    1    1    2    2 |   1   1   1   2
----------------+------+----------------+--------------------------+----------------
both( x . . . ) |    2 | 3600    *    * |    2    0    0    2    0 |   1   1   0   2
both( . x . . ) |    2 |    * 7200    * |    1    1    0    0    1 |   1   0   1   1
sefa( . . o5β ) |    2 |    *    * 7200 |    0    0    1    1    1 |   0   1   1   1
----------------+------+----------------+--------------------------+----------------
both( x3x . . ) |    6 |    3    3    0 | 2400    *    *    *    * |   1   0   0   1
both( . x3o . ) |    3 |    0    3    0 |    * 2400    *    *    * |   1   0   1   0
      . . o5β       5 |    0    0    5 |    *    * 1440    *    * |   0   1   1   0
sefa( x 2 o5β ) |    4 |    2    0    2 |    *    *    * 3600    * |   0   1   0   1
sefa( . x3o5β ) |    6 |    0    3    3 |    *    *    *    * 2400 |   0   0   1   1
----------------+------+----------------+--------------------------+----------------
both( x3x3o . )    12 |    6   12    0 |    4    4    0    0    0 | 600   *   *   *
      x 2 o5β      10 |    5    0   10 |    0    0    2    5    0 |   * 720   *   *
      . x3o5β      60 |    0   60   60 |    0   20   12    0   20 |   *   * 120   *
sefa( x3x3o5β )    24 |   12   12   12 |    4    0    0    6    4 |   *   *   * 600

starting figure: x3x3o5x

© 2004-2024
top of page