Acronym ..., 10Y4-8T-1-hel
Name helical staggered 1×60°-gyrated 10Y4-8T-0
VRML
  ©
Pattern
(fundamental domain)
     u         Vertices:
    /|\        u = vertices within lower trat plane
   / c \       o = vertices within upper trat plane
  a _o_ b      
 /_d/T\d_\     Edges:
u--/-a-\--u    a = {4}-inc. trat-edges
|\b  Y  a/|    b = not {4}-inc. trat-edges
c/b  Y  a\c    c = {4}-inc. lace-edges
o-_--a--_-o    d = not {4}-inc. lace-edges
 \ d\T/d /     
  a  u  b      Triangles:
   \ | /       N = betw. T and Y4
    \c/        Y = betw. Y4 and Y4
     o         T = betw. T and T
Confer
related CRF honeycombs:
10Y4-8T-0   10Y4-8T-1-alt   10Y4-8T-2-alt   10Y4-8T-2-hel (r/l)   10Y4-8T-3   5Y4-4T-6P3-tri-1-hel (r/l)  
general polytopal classes:
scaliform  
External
links
mcneill

This scaliform honeycomb is derived from 5Y4-4T-6P3-tri-1-hel by withdrawing the elongating layers of trips.

Further it occurs as gyration at one set of parallel trat sections of 10Y4-8T-0 in steps of 1×60° using the 6-periodic helical stacking mode.

Note that this very vertex configuration shown above can be used with layer alternating (10Y4-8T-1-alt) or with helical stacking (here).


Incidence matrix

(N→∞)

N |  4 2 2  4 | 3 3  6  6  6 4 |  8 10
--+-----------+----------------+------
2 | 2N * *  * | 1 1  1  0  1 1 |  2  3  a
2 |  * N *  * | 1 1  0  2  0 0 |  2  2  b
2 |  * * N  * | 0 0  2  2  0 2 |  2  4  c
2 |  * * * 2N | 0 0  1  1  2 0 |  2  2  d
--+-----------+----------------+------
3 |  2 1 0  0 | N *  *  *  * * |  2  0  aab-T
3 |  2 1 0  0 | * N  *  *  * * |  0  2  aab-Y
3 |  1 0 1  1 | * * 2N  *  * * |  1  1  acd
3 |  0 1 1  1 | * *  * 2N  * * |  1  1  bcd
3 |  1 0 0  2 | * *  *  * 2N * |  1  1  add
4 |  2 0 2  0 | * *  *  *  * N |  0  2  acac
--+-----------+----------------+------
4 |  2 1 1  2 | 1 0  1  1  1 0 | 2N  *  tet
5 |  3 1 2  2 | 0 1  1  1  1 1 |  * 2N  squippy

© 2004-2025
top of page