| Acronym | cesratit |
| Name | octahedra-alternated faceting of scartit |
| Confer |
|
This is a scaliform tetracomb, obtained as a variation of a faceting of the small cellirhombated tesseractic tetracomb (scartit). Or as a Stott addition of the hexadecachoral tetracomb (s4o3o3o4s, hext) with the icositetrachoral tetracomb (o4o3x3o4o, icot), resulting in shifting one fourth of the formerly hexadecachora (hex, in fact the ones, which occur as: s4o 2 o4s) one edge length appart.
Incidence matrix according to Dynkin symbol
s4o3x3o4s (N → ∞)
demi( . . . . . ) | 48N | 4 1 4 1 | 2 2 4 4 6 6 4 | 1 2 2 2 2 2 6 4 6 2 | 1 2 1 2 1 4
------------------+-----+-----------------+-----------------------------+------------------------------------+----------------
demi( . . x . . ) | 2 | 96N * * * | 1 1 1 1 0 0 1 | 1 1 0 0 1 1 2 0 2 1 | 1 1 0 1 1 2
s4o . . . | 2 | * 24N * * | 0 0 0 4 4 0 0 | 0 2 2 0 0 2 4 2 0 0 | 1 2 1 0 0 2
s . 2 . s | 2 | * * 96N * | 0 0 1 0 2 2 0 | 0 0 1 1 0 0 2 2 2 0 | 0 1 1 1 0 2
. . . o4s | 2 | * * * 24N | 0 0 0 0 0 4 4 | 0 0 0 2 2 0 0 2 4 2 | 0 0 1 2 1 2
------------------+-----+-----------------+-----------------------------+------------------------------------+----------------
demi( . o3x . . ) | 3 | 3 0 0 0 | 32N * * * * * * | 1 1 0 0 0 0 1 0 0 1 | 1 1 0 0 1 1
demi( . . x3o . ) | 3 | 3 0 0 0 | * 32N * * * * * | 1 0 0 0 1 1 0 0 1 0 | 1 0 0 1 1 1
s 2 x 2 s | 4 | 2 0 2 0 | * * 48N * * * * | 0 0 0 0 0 0 2 0 2 0 | 0 1 0 1 0 2
sefa( s4o3x . . ) | 6 | 3 3 0 0 | * * * 32N * * * | 0 1 0 0 0 1 1 0 0 0 | 1 1 0 0 0 1
sefa( s4o . 2 s ) | 3 | 0 1 2 0 | * * * * 96N * * | 0 0 1 0 0 0 1 1 0 0 | 0 1 1 0 0 1
sefa( s 2 . o4s ) | 3 | 0 0 2 1 | * * * * * 96N * | 0 0 0 1 0 0 0 1 1 0 | 0 0 1 1 0 1
sefa( . . x3o4s ) | 6 | 3 0 0 3 | * * * * * * 32N | 0 0 0 0 1 0 0 0 1 1 | 0 0 0 1 1 1
------------------+-----+-----------------+-----------------------------+------------------------------------+----------------
demi( . o3x3o . ) ♦ 6 | 12 0 0 0 | 4 4 0 0 0 0 0 | 8N * * * * * * * * * | 1 0 0 0 1 0
s4o3x . . ♦ 12 | 12 6 0 0 | 4 0 0 4 0 0 0 | * 8N * * * * * * * * | 1 1 0 0 0 0
s4o . 2 s ♦ 4 | 0 2 4 0 | 0 0 0 0 4 0 0 | * * 24N * * * * * * * | 0 1 1 0 0 0
s 2 . o4s ♦ 4 | 0 0 4 2 | 0 0 0 0 0 4 0 | * * * 24N * * * * * * | 0 0 1 1 0 0
. . x3o4s ♦ 12 | 12 0 0 6 | 0 4 0 0 0 0 4 | * * * * 8N * * * * * | 0 0 0 1 1 0
sefa( s4o3x3o . ) ♦ 12 | 12 6 0 0 | 0 4 0 4 0 0 0 | * * * * * 8N * * * * | 1 0 0 0 0 1
sefa( s4o3x 2 s ) ♦ 9 | 6 3 6 0 | 1 0 3 1 3 0 0 | * * * * * * 32N * * * | 0 1 0 0 0 1
sefa( s4o 2 o4s ) ♦ 4 | 0 1 4 1 | 0 0 0 0 2 2 0 | * * * * * * * 48N * * | 0 0 1 0 0 1
sefa( s 2 x3o4s ) ♦ 9 | 6 0 6 3 | 0 1 3 0 0 3 1 | * * * * * * * * 32N * | 0 0 0 1 0 1
sefa( . o3x3o4s ) ♦ 12 | 12 0 0 6 | 4 0 0 0 0 0 4 | * * * * * * * * * 8N | 0 0 0 0 1 1
------------------+-----+-----------------+-----------------------------+------------------------------------+----------------
s4o3x3o . ♦ 48 | 96 24 0 0 | 32 32 0 32 0 0 0 | 8 8 0 0 0 8 0 0 0 0 | N * * * * *
s4o3x 2 s ♦ 24 | 24 12 24 0 | 8 0 12 8 24 0 0 | 0 2 6 0 0 0 8 0 0 0 | * 4N * * * *
s4o 2 o4s ♦ 8 | 0 4 16 4 | 0 0 0 0 16 16 0 | 0 0 4 4 0 0 0 8 0 0 | * * 6N * * *
s 2 x3o4s ♦ 24 | 24 0 24 12 | 0 8 12 0 0 24 8 | 0 0 0 6 2 0 0 0 8 0 | * * * 4N * *
. o3x3o4s ♦ 48 | 96 0 0 24 | 32 32 0 0 0 0 32 | 8 0 0 0 8 0 0 0 0 8 | * * * * N *
sefa( s4o3x3o4s ) ♦ 24 | 24 6 24 6 | 4 4 12 4 12 12 4 | 0 0 0 0 0 1 4 6 4 1 | * * * * * 8N
or
demi( . . . . . ) | 24N | 4 2 2 | 4 4 8 12 | 1 4 4 4 12 4 | 2 4 1 4
--------------------+-----+-------------+-----------------+----------------------+-----------
demi( . . x . . ) | 2 | 48N * * | 2 1 2 0 | 1 2 0 2 4 0 | 2 2 0 2
s4o . . . & | 2 | * 24N * | 0 0 4 4 | 0 2 2 2 4 2 | 1 2 1 2
s . 2 . s | 2 | * * 48N | 0 1 0 4 | 0 0 2 0 4 2 | 0 2 1 2
--------------------+-----+-------------+-----------------+----------------------+-----------
demi( . o3x . . ) & | 3 | 3 0 0 | 32N * * * | 1 1 0 1 1 0 | 2 1 0 1
s 2 x 2 s | 4 | 2 0 2 | * 24N * * | 0 0 0 0 4 0 | 0 2 0 2
sefa( s4o3x . . ) & | 6 | 3 3 0 | * * 32N * | 0 1 0 1 1 0 | 1 1 0 1
sefa( s4o . 2 s ) & | 3 | 0 1 2 | * * * 96N | 0 0 1 0 1 1 | 0 1 1 1
--------------------+-----+-------------+-----------------+----------------------+-----------
demi( . o3x3o . ) ♦ 6 | 12 0 0 | 8 0 0 0 | 4N * * * * * | 2 0 0 0
s4o3x . . & ♦ 12 | 12 6 0 | 4 0 4 0 | * 8N * * * * | 1 1 0 0
s4o . 2 s & ♦ 4 | 0 2 4 | 0 0 0 4 | * * 24N * * * | 0 1 1 0
sefa( s4o3x3o . ) & ♦ 12 | 12 6 0 | 4 0 4 0 | * * * 8N * * | 1 0 0 1
sefa( s4o3x 2 s ) & ♦ 9 | 6 3 6 | 1 3 1 3 | * * * * 32N * | 0 1 0 1
sefa( s4o 2 o4s ) ♦ 4 | 0 2 4 | 0 0 0 4 | * * * * * 24N | 0 0 1 1
--------------------+-----+-------------+-----------------+----------------------+-----------
s4o3x3o . & ♦ 48 | 96 24 0 | 64 0 32 0 | 8 8 0 8 0 0 | N * * *
s4o3x 2 s & ♦ 24 | 24 12 24 | 8 12 8 24 | 0 2 6 0 8 0 | * 4N * *
s4o 2 o4s ♦ 8 | 0 8 16 | 0 0 0 32 | 0 0 8 0 0 8 | * * 3N *
sefa( s4o3x3o4s ) ♦ 24 | 24 12 24 | 8 12 8 24 | 0 0 0 2 8 6 | * * * 4N
starting figure: x4o3x3o4x
© 2004-2025 | top of page |