Acronym ...
Name sid pippadia + 240 2sissid
Circumradius sqrt[(31+9 sqrt(5))/8] = 2.527959
Confer
non-Grünbaumian master:
sid pippadia  

Either base of this Grünbaumian polyteron happens to be sid pippady + 120x 2sissid.


Incidence matrix according to Dynkin symbol

β2β5o5/2o5x

both( . . .   . . ) | 2880 |    5    5    10 |    5   10    5    15    5   10 |   1    5    5   1    5    6   15   5 |   1   5 1   6
--------------------+------+-----------------+--------------------------------+--------------------------------------+--------------
both( . . .   . x ) |    2 | 7200    *     * |    2    2    0     0    0    2 |   1    0    2   0    1    0    3   2 |   0   1 1   3
      β2β .   . .   |    2 |    * 7200     * |    0    2    0     4    0    0 |   0    2    1   0    0    2    4   0 |   1   2 0   2
sefa( . β5o   . . ) |    2 |    *    * 14400 |    0    0    1     1    1    1 |   0    1    0   1    1    1    1   1 |   1   1 1   1
--------------------+------+-----------------+--------------------------------+--------------------------------------+--------------
both( . . .   o5x ) |    5 |    5    0     0 | 2880    *    *     *    *    * |   1    0    1   0    0    0    0   1 |   0   0 1   2
      β2β .   . x   |    4 |    2    2     0 |    * 7200    *     *    *    * |   0    0    1   0    0    0    2   0 |   0   1 0   2
      . β5o   . .   |    5 |    0    0     5 |    *    * 2880     *    *    * |   0    1    0   1    1    0    0   0 |   1   1 1   0  {5/2}
sefa( β2β5o   . . ) |    3 |    0    2     1 |    *    *    * 14400    *    * |   0    1    0   0    0    1    1   0 |   1   1 0   1
sefa( . β5o5/2o . ) |    5 |    0    0     5 |    *    *    *     * 2880    * |   0    0    0   1    0    1    0   1 |   1   0 1   1  {5/2}
sefa( . β5o   2 x ) |    4 |    2    0     2 |    *    *    *     *    * 7200 |   0    0    0   0    1    0    1   1 |   0   1 1   1
--------------------+------+-----------------+--------------------------------+--------------------------------------+--------------
both( . . o5/2o5x )    12 |   30    0     0 |   12    0    0     0    0    0 | 240    *    *   *    *    *    *   * |   0   0 1   1
      β2β5o   . .      10 |    0   10    10 |    0    0    2    10    0    0 |   * 1440    *   *    *    *    *   * |   1   1 0   0
      β2β 2   o5x      10 |   10    5     0 |    2    5    0     0    0    0 |   *    * 1440   *    *    *    *   * |   0   0 0   2
      . β5o5/2o .      12 |    0    0    60 |    0    0   12     0   12    0 |   *    *    * 240    *    *    *   * |   1   0 1   0
      . β5o   2 x      10 |    5    0    10 |    0    0    2     0    0    5 |   *    *    *   * 1440    *    *   * |   0   1 1   0
sefa( β2β5o5/2o . )     6 |    0    5     5 |    0    0    0     5    1    0 |   *    *    *   *    * 2880    *   * |   1   0 0   1
sefa( β2β5o   2 x )     6 |    3    4     2 |    0    2    0     2    0    1 |   *    *    *   *    *    * 7200   * |   0   1 0   1
sefa( . β5o5/2o5x )    60 |   60    0    60 |   12    0    0     0   12   30 |   *    *    *   *    *    *    * 240 |   0   0 1   1
--------------------+------+-----------------+--------------------------------+--------------------------------------+--------------
      β2β5o5/2o .      24 |    0   60   120 |    0    0   24   120   24    0 |   0   12    0   2    0   24    0   0 | 120   * *   *
      β2β5o   2 x      20 |   10   20    20 |    0   10    4    20    0   10 |   0    2    0   0    2    0   10   0 |   * 720 *   *
      . β5o5/2o5x    1440 | 3600    0  7200 | 1440    0 1440     0 1440 3600 | 120    0    0 120  720    0    0 120 |   *   * 2   *
sefa( β2β5o5/2o5x )    72 |   90   60    60 |   24   60    0    60   12   30 |   1    0   12   0    0   12   30   1 |   *   * * 240

starting figure: x x5o5/2o5x

xx5oo5/2xo5/2ox5/2*b&#x   → height = sqrt[(sqrt(5)-1)/2] = 0.786151

o.5o.5/2o.5/2o.5/2*b    & | 2880 |    5    10    5 |    5   10    5    5   10    15 |   5   1    5   1    5   15    6    5 | 1   6   5   1
--------------------------+------+-----------------+--------------------------------+--------------------------------------+--------------
x. ..   ..   ..         & |    2 | 7200     *    * |    2    2    0    0    2     0 |   2   1    1   0    2    3    0    0 | 1   3   1   0
.. ..   x.   ..         & |    2 |    * 14400    * |    0    1    1    1    0     1 |   1   0    1   1    0    1    1    1 | 1   1   1   1
oo5oo5/2oo5/2oo5/2*b&#x   |    2 |    *     * 7200 |    0    0    0    0    2     4 |   0   0    0   0    1    4    2    2 | 0   2   2   1
--------------------------+------+-----------------+--------------------------------+--------------------------------------+--------------
x.5o.   ..   ..         & |    5 |    5     0    0 | 2880    *    *    *    *     * |   1   1    0   0    1    0    0    0 | 1   2   0   0
x. ..   x.   ..         & |    4 |    2     2    0 |    * 7200    *    *    *     * |   1   0    1   0    0    1    0    0 | 1   1   1   0
.. o.5/2x.   ..         & |    5 |    0     5    0 |    *    * 2880    *    *     * |   1   0    0   1    0    0    1    0 | 1   1   0   1
.. ..   x.5/2o.         & |    5 |    0     5    0 |    *    *    * 2880    *     * |   0   0    1   1    0    0    0    1 | 1   0   1   1
xx ..   ..   ..     &#x   |    4 |    2     0    2 |    *    *    *    * 7200     * |   0   0    0   0    1    2    0    0 | 0   2   1   0
.. ..   xo   ..     &#x & |    3 |    0     1    2 |    *    *    *    *    * 14400 |   0   0    0   0    0    1    1    1 | 0   1   1   1
--------------------------+------+-----------------+--------------------------------+--------------------------------------+--------------
x.5o.5/2x.   ..         &    60 |   60    60    0 |   12   30   12    0    0     0 | 240   *    *   *    *    *    *    * | 1   1   0   0
x.5o.   ..   o.5/2*b    &    12 |   30     0    0 |   12    0    0    0    0     0 |   * 240    *   *    *    *    *    * | 1   1   0   0
x. ..   x.5/2o.         &    10 |    5    10    0 |    0    5    0    2    0     0 |   *   * 1440   *    *    *    *    * | 1   0   1   0
.. o.5/2x.5/2o.5/2*b    &    12 |    0    60    0 |    0    0   12   12    0     0 |   *   *    * 240    *    *    *    * | 1   0   0   1
xx5oo   ..   ..     &#x      10 |   10     0    5 |    2    0    0    0    5     0 |   *   *    *   * 1440    *    *    * | 0   2   0   0
xx ..   xo   ..     &#x &     6 |    3     2    4 |    0    1    0    0    2     2 |   *   *    *   *    * 7200    *    * | 0   1   1   0
.. oo5/2xo   ..     &#x &     6 |    0     5    5 |    0    0    1    0    0     5 |   *   *    *   *    *    * 2880    * | 0   1   0   1
.. ..   xo5/2ox     &#x      10 |    0    10   10 |    0    0    0    2    0    10 |   *   *    *   *    *    *    * 1440 | 0   0   1   1
--------------------------+------+-----------------+--------------------------------+--------------------------------------+--------------
x.5o.5/2x.5/2o.5/2*b    &  1440 | 3600  7200    0 | 1440 3600 1440 1440    0     0 | 120 120  720 120    0    0    0    0 | 2   *   *   *
xx5oo5/2xo   ..     &#x &    72 |   90    60   60 |   24   30   12    0   60    60 |   1   1    0   0   12   30   12    0 | * 240   *   *
xx ..   xo5/2ox     &#x      20 |   10    20   20 |    0   10    0    4   10    20 |   0   0    2   0    0   10    0    2 | *   * 720   *
.. oo5/2xo5/2ox5/2*b&#x      24 |    0   120   60 |    0    0   24   24    0   120 |   0   0    0   2    0    0   24   12 | *   *   * 120

© 2004-2024
top of page