Acronym | ... |
Name | sid pippadia + 240 2sissid |
Circumradius | sqrt[(31+9 sqrt(5))/8] = 2.527959 |
Confer |
|
Either base of this Grünbaumian polyteron happens to be sid pippady + 120x 2sissid.
Incidence matrix according to Dynkin symbol
β2β5o5/2o5x both( . . . . . ) | 2880 | 5 5 10 | 5 10 5 15 5 10 | 1 5 5 1 5 6 15 5 | 1 5 1 6 --------------------+------+-----------------+--------------------------------+--------------------------------------+-------------- both( . . . . x ) | 2 | 7200 * * | 2 2 0 0 0 2 | 1 0 2 0 1 0 3 2 | 0 1 1 3 β2β . . . | 2 | * 7200 * | 0 2 0 4 0 0 | 0 2 1 0 0 2 4 0 | 1 2 0 2 sefa( . β5o . . ) | 2 | * * 14400 | 0 0 1 1 1 1 | 0 1 0 1 1 1 1 1 | 1 1 1 1 --------------------+------+-----------------+--------------------------------+--------------------------------------+-------------- both( . . . o5x ) | 5 | 5 0 0 | 2880 * * * * * | 1 0 1 0 0 0 0 1 | 0 0 1 2 β2β . . x | 4 | 2 2 0 | * 7200 * * * * | 0 0 1 0 0 0 2 0 | 0 1 0 2 . β5o . . | 5 | 0 0 5 | * * 2880 * * * | 0 1 0 1 1 0 0 0 | 1 1 1 0 {5/2} sefa( β2β5o . . ) | 3 | 0 2 1 | * * * 14400 * * | 0 1 0 0 0 1 1 0 | 1 1 0 1 sefa( . β5o5/2o . ) | 5 | 0 0 5 | * * * * 2880 * | 0 0 0 1 0 1 0 1 | 1 0 1 1 {5/2} sefa( . β5o 2 x ) | 4 | 2 0 2 | * * * * * 7200 | 0 0 0 0 1 0 1 1 | 0 1 1 1 --------------------+------+-----------------+--------------------------------+--------------------------------------+-------------- both( . . o5/2o5x ) ♦ 12 | 30 0 0 | 12 0 0 0 0 0 | 240 * * * * * * * | 0 0 1 1 β2β5o . . ♦ 10 | 0 10 10 | 0 0 2 10 0 0 | * 1440 * * * * * * | 1 1 0 0 β2β 2 o5x ♦ 10 | 10 5 0 | 2 5 0 0 0 0 | * * 1440 * * * * * | 0 0 0 2 . β5o5/2o . ♦ 12 | 0 0 60 | 0 0 12 0 12 0 | * * * 240 * * * * | 1 0 1 0 . β5o 2 x ♦ 10 | 5 0 10 | 0 0 2 0 0 5 | * * * * 1440 * * * | 0 1 1 0 sefa( β2β5o5/2o . ) ♦ 6 | 0 5 5 | 0 0 0 5 1 0 | * * * * * 2880 * * | 1 0 0 1 sefa( β2β5o 2 x ) ♦ 6 | 3 4 2 | 0 2 0 2 0 1 | * * * * * * 7200 * | 0 1 0 1 sefa( . β5o5/2o5x ) ♦ 60 | 60 0 60 | 12 0 0 0 12 30 | * * * * * * * 240 | 0 0 1 1 --------------------+------+-----------------+--------------------------------+--------------------------------------+-------------- β2β5o5/2o . ♦ 24 | 0 60 120 | 0 0 24 120 24 0 | 0 12 0 2 0 24 0 0 | 120 * * * β2β5o 2 x ♦ 20 | 10 20 20 | 0 10 4 20 0 10 | 0 2 0 0 2 0 10 0 | * 720 * * . β5o5/2o5x ♦ 1440 | 3600 0 7200 | 1440 0 1440 0 1440 3600 | 120 0 0 120 720 0 0 120 | * * 2 * sefa( β2β5o5/2o5x ) ♦ 72 | 90 60 60 | 24 60 0 60 12 30 | 1 0 12 0 0 12 30 1 | * * * 240 starting figure: x x5o5/2o5x
xx5oo5/2xo5/2ox5/2*b&#x → height = sqrt[(sqrt(5)-1)/2] = 0.786151 o.5o.5/2o.5/2o.5/2*b & | 2880 | 5 10 5 | 5 10 5 5 10 15 | 5 1 5 1 5 15 6 5 | 1 6 5 1 --------------------------+------+-----------------+--------------------------------+--------------------------------------+-------------- x. .. .. .. & | 2 | 7200 * * | 2 2 0 0 2 0 | 2 1 1 0 2 3 0 0 | 1 3 1 0 .. .. x. .. & | 2 | * 14400 * | 0 1 1 1 0 1 | 1 0 1 1 0 1 1 1 | 1 1 1 1 oo5oo5/2oo5/2oo5/2*b&#x | 2 | * * 7200 | 0 0 0 0 2 4 | 0 0 0 0 1 4 2 2 | 0 2 2 1 --------------------------+------+-----------------+--------------------------------+--------------------------------------+-------------- x.5o. .. .. & | 5 | 5 0 0 | 2880 * * * * * | 1 1 0 0 1 0 0 0 | 1 2 0 0 x. .. x. .. & | 4 | 2 2 0 | * 7200 * * * * | 1 0 1 0 0 1 0 0 | 1 1 1 0 .. o.5/2x. .. & | 5 | 0 5 0 | * * 2880 * * * | 1 0 0 1 0 0 1 0 | 1 1 0 1 .. .. x.5/2o. & | 5 | 0 5 0 | * * * 2880 * * | 0 0 1 1 0 0 0 1 | 1 0 1 1 xx .. .. .. &#x | 4 | 2 0 2 | * * * * 7200 * | 0 0 0 0 1 2 0 0 | 0 2 1 0 .. .. xo .. &#x & | 3 | 0 1 2 | * * * * * 14400 | 0 0 0 0 0 1 1 1 | 0 1 1 1 --------------------------+------+-----------------+--------------------------------+--------------------------------------+-------------- x.5o.5/2x. .. & ♦ 60 | 60 60 0 | 12 30 12 0 0 0 | 240 * * * * * * * | 1 1 0 0 x.5o. .. o.5/2*b & ♦ 12 | 30 0 0 | 12 0 0 0 0 0 | * 240 * * * * * * | 1 1 0 0 x. .. x.5/2o. & ♦ 10 | 5 10 0 | 0 5 0 2 0 0 | * * 1440 * * * * * | 1 0 1 0 .. o.5/2x.5/2o.5/2*b & ♦ 12 | 0 60 0 | 0 0 12 12 0 0 | * * * 240 * * * * | 1 0 0 1 xx5oo .. .. &#x ♦ 10 | 10 0 5 | 2 0 0 0 5 0 | * * * * 1440 * * * | 0 2 0 0 xx .. xo .. &#x & ♦ 6 | 3 2 4 | 0 1 0 0 2 2 | * * * * * 7200 * * | 0 1 1 0 .. oo5/2xo .. &#x & ♦ 6 | 0 5 5 | 0 0 1 0 0 5 | * * * * * * 2880 * | 0 1 0 1 .. .. xo5/2ox &#x ♦ 10 | 0 10 10 | 0 0 0 2 0 10 | * * * * * * * 1440 | 0 0 1 1 --------------------------+------+-----------------+--------------------------------+--------------------------------------+-------------- x.5o.5/2x.5/2o.5/2*b & ♦ 1440 | 3600 7200 0 | 1440 3600 1440 1440 0 0 | 120 120 720 120 0 0 0 0 | 2 * * * xx5oo5/2xo .. &#x & ♦ 72 | 90 60 60 | 24 30 12 0 60 60 | 1 1 0 0 12 30 12 0 | * 240 * * xx .. xo5/2ox &#x ♦ 20 | 10 20 20 | 0 10 0 4 10 20 | 0 0 2 0 0 10 0 2 | * * 720 * .. oo5/2xo5/2ox5/2*b&#x ♦ 24 | 0 120 60 | 0 0 24 24 0 120 | 0 0 0 2 0 0 24 12 | * * * 120
© 2004-2024 | top of page |