Acronym tedhin
Name tetradiminished hemipenteract,
square || hex
Circumradius sqrt(5/8) = 0.790569
Lace city
in approx. ASCII-art
    4    
         
t       T   -- alt. hex

          \
           +-- bidrap
wobei 
4 =  x x     (square) = bidimin. of (oct = bidimin. gyro hex)
t = xo ox&#x (tet)
T = ox xo&#x (dual tet)
Lace hyper city
in approx. ASCII-art
         
         
   x x   
         
         
x o   o x
         
         
         
o x   x o
({4} || alternate hex)
Coordinates
  1. (1/sqrt(2), 0, 0, 0, 1/sqrt(8))   & all permutations and changes of sign in the first 2 coordinates only
    (top square)
  2. (1/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8), -1/sqrt(8))   & any even change of signs in the first 4 coordinates only
    (bottom hex)
Face vector 12, 44, 73, 56, 17
Confer
uniform relative:
hin  
segmentotera:
dihin   bidhin   squasquasc   rappy  
general polytopal classes:
segmentotera  

The hemipenteract (hin) could be given as hex || gyro hex. Here the top-hex (itself being a tegum sum of 2 perp. squares) has to be tetradiminished at all vertices of one of its diametral squares. Simultanuously the bottom-hex only gets marginally rasped at 4 tets. The sefa clearly is related to the vertex figure of hin, i.e. rap. In fact, as those will intersect here, these become bidraps In other words, one chops off 4 (intersecting) rappies.


Incidence matrix according to Dynkin symbol

(xo)o (ox)o (xo)x (ox)x&#x   → height(1,2) = 0
                               height(1,3) = height(2,3) = 1/sqrt(2) = 0.707107
(hex || part. para square)

(o.). (o.). (o.). (o.).    & | 8 * | 1 1  4  2 0 |  6  6 2 2 1  4 0 | 2 4 2 1 1  6  6 | 1 2 4 2
(..)o (..)o (..)o (..)o      | * 4 | 0 0  0  4 2 |  0  0 2 4 4  4 1 | 0 0 0 2 4  4  8 | 0 1 4 4
-----------------------------+-----+-------------+------------------+-----------------+--------
(x.). (..). (..). (..).    & | 2 0 | 4 *  *  * * |  4  0 2 0 0  0 0 | 2 2 0 1 0  4  0 | 1 2 2 0
(..). (..). (x.). (..).    & | 2 0 | * 4  *  * * |  0  4 0 2 0  0 0 | 0 2 2 0 1  0  4 | 1 0 2 2
(oo). (oo). (oo). (oo).&#x   | 2 0 | * * 16  * * |  2  2 0 0 0  1 0 | 1 2 1 0 0  2  2 | 1 1 2 1
(o.)o (o.)o (o.)o (o.)o&#x & | 1 1 | * *  * 16 * |  0  0 1 1 1  2 0 | 0 0 0 1 1  3  4 | 0 1 3 2
(..). (..). (..)x (..).      | 0 2 | * *  *  * 4 |  0  0 0 2 2  0 1 | 0 0 0 1 4  0  4 | 0 0 2 4
-----------------------------+-----+-------------+------------------+-----------------+--------
(xo). (..). (..). (..).&#x & | 3 0 | 1 0  2  0 0 | 16  * * * *  * * | 1 1 0 0 0  1  0 | 1 1 1 0
(..). (..). (xo). (..).&#x & | 3 0 | 0 1  2  0 0 |  * 16 * * *  * * | 0 1 1 0 0  0  1 | 1 0 1 1
(x.)o (..). (..). (..).&#x & | 2 1 | 1 0  0  2 0 |  *  * 8 * *  * * | 0 0 0 1 0  2  0 | 0 1 2 0
(..). (..). (x.)x (..).&#x & | 2 2 | 0 1  0  2 1 |  *  * * 8 *  * * | 0 0 0 0 1  0  2 | 0 0 1 2
(..). (..). (..). (o.)x&#x & | 1 2 | 0 0  0  2 1 |  *  * * * 8  * * | 0 0 0 1 1  0  2 | 0 0 2 2
(oo)o (oo)o (oo)o (oo)o&#x   | 2 1 | 0 0  1  2 0 |  *  * * * * 16 * | 0 0 0 0 0  2  2 | 0 1 2 1
(..). (..). (..)x (..)x      | 0 4 | 0 0  0  0 4 |  *  * * * *  * 1 | 0 0 0 0 4  0  0 | 0 0 0 4
-----------------------------+-----+-------------+------------------+-----------------+--------
(xo). (ox). (..). (..).&#x    4 0 | 2 0  4  0 0 |  4  0 0 0 0  0 0 | 4 * * * *  *  * | 1 1 0 0
(xo). (..). (..). (ox).&#x &  4 0 | 1 1  4  0 0 |  2  2 0 0 0  0 0 | * 8 * * *  *  * | 1 0 1 0
(..). (..). (xo). (ox).&#x    4 0 | 0 2  4  0 0 |  0  4 0 0 0  0 0 | * * 4 * *  *  * | 1 0 0 1
(x.)o (..). (..). (o.)x&#x &  2 2 | 1 0  0  4 1 |  0  0 2 0 2  0 0 | * * * 4 *  *  * | 0 0 2 0
(..). (..). (x.)x (o.)x&#x &  2 4 | 0 1  0  4 4 |  0  0 0 2 2  0 1 | * * * * 4  *  * | 0 0 0 2
(xo)o (..). (..). (..).&#x &  3 1 | 1 0  2  3 0 |  1  0 1 0 0  2 0 | * * * * * 16  * | 0 1 1 0
(..). (..). (xo)x (..).&#x &  3 2 | 0 1  2  4 1 |  0  1 0 1 1  2 0 | * * * * *  * 16 | 0 0 1 1
-----------------------------+-----+-------------+------------------+-----------------+--------
(xo). (ox). (xo). (ox).&#zx   8 0 | 4 4 16  0 0 | 16 16 0 0 0  0 0 | 4 8 4 0 0  0  0 | 1 * * *
(xo)o (ox)o (..). (..).&#x &  4 1 | 2 0  4  4 0 |  4  0 2 0 0  4 0 | 1 0 0 0 0  4  0 | * 4 * *
(xo)o (..). (..). (ox)x&#x &  4 2 | 1 1  4  6 1 |  2  2 2 1 2  4 0 | 0 1 0 1 0  2  2 | * * 8 *
(..). (..). (xo)x (ox)x&#x    4 4 | 0 2  4  8 4 |  0  4 0 4 4  4 1 | 0 0 1 0 2  0  4 | * * * 4

© 2004-2024
top of page