| Acronym | tedhin | ||
| Name |
tetradiminished hemipenteract, square || hex | ||
| Circumradius | sqrt(5/8) = 0.790569 | ||
|
Lace city in approx. ASCII-art |
4
t T -- alt. hex
\
+-- bidrap
wobei
4 = x x (square) = bidimin. of (oct = bidimin. gyro hex)
t = xo ox&#x (tet)
T = ox xo&#x (dual tet)
| ||
|
Lace hyper city in approx. ASCII-art |
| ||
| Coordinates |
| ||
| Face vector | 12, 44, 73, 56, 17 | ||
| Confer |
|
The hemipenteract (hin) could be given as hex || gyro hex. Here the top-hex (itself being a tegum sum of 2 perp. squares) has to be tetradiminished at all vertices of one of its diametral squares. Simultanuously the bottom-hex only gets marginally rasped at 4 tets. The sefa clearly is related to the vertex figure of hin, i.e. rap. In fact, as those will intersect here, these become bidraps In other words, one chops off 4 (intersecting) rappies.
Incidence matrix according to Dynkin symbol
(xo)o (ox)o (xo)x (ox)x&#x → height(1,2) = 0
height(1,3) = height(2,3) = 1/sqrt(2) = 0.707107
(hex || part. para square)
(o.). (o.). (o.). (o.). & | 8 * | 1 1 4 2 0 | 6 6 2 2 1 4 0 | 2 4 2 1 1 6 6 | 1 2 4 2
(..)o (..)o (..)o (..)o | * 4 | 0 0 0 4 2 | 0 0 2 4 4 4 1 | 0 0 0 2 4 4 8 | 0 1 4 4
-----------------------------+-----+-------------+------------------+-----------------+--------
(x.). (..). (..). (..). & | 2 0 | 4 * * * * | 4 0 2 0 0 0 0 | 2 2 0 1 0 4 0 | 1 2 2 0
(..). (..). (x.). (..). & | 2 0 | * 4 * * * | 0 4 0 2 0 0 0 | 0 2 2 0 1 0 4 | 1 0 2 2
(oo). (oo). (oo). (oo).&#x | 2 0 | * * 16 * * | 2 2 0 0 0 1 0 | 1 2 1 0 0 2 2 | 1 1 2 1
(o.)o (o.)o (o.)o (o.)o&#x & | 1 1 | * * * 16 * | 0 0 1 1 1 2 0 | 0 0 0 1 1 3 4 | 0 1 3 2
(..). (..). (..)x (..). | 0 2 | * * * * 4 | 0 0 0 2 2 0 1 | 0 0 0 1 4 0 4 | 0 0 2 4
-----------------------------+-----+-------------+------------------+-----------------+--------
(xo). (..). (..). (..).&#x & | 3 0 | 1 0 2 0 0 | 16 * * * * * * | 1 1 0 0 0 1 0 | 1 1 1 0
(..). (..). (xo). (..).&#x & | 3 0 | 0 1 2 0 0 | * 16 * * * * * | 0 1 1 0 0 0 1 | 1 0 1 1
(x.)o (..). (..). (..).&#x & | 2 1 | 1 0 0 2 0 | * * 8 * * * * | 0 0 0 1 0 2 0 | 0 1 2 0
(..). (..). (x.)x (..).&#x & | 2 2 | 0 1 0 2 1 | * * * 8 * * * | 0 0 0 0 1 0 2 | 0 0 1 2
(..). (..). (..). (o.)x&#x & | 1 2 | 0 0 0 2 1 | * * * * 8 * * | 0 0 0 1 1 0 2 | 0 0 2 2
(oo)o (oo)o (oo)o (oo)o&#x | 2 1 | 0 0 1 2 0 | * * * * * 16 * | 0 0 0 0 0 2 2 | 0 1 2 1
(..). (..). (..)x (..)x | 0 4 | 0 0 0 0 4 | * * * * * * 1 | 0 0 0 0 4 0 0 | 0 0 0 4
-----------------------------+-----+-------------+------------------+-----------------+--------
(xo). (ox). (..). (..).&#x ♦ 4 0 | 2 0 4 0 0 | 4 0 0 0 0 0 0 | 4 * * * * * * | 1 1 0 0
(xo). (..). (..). (ox).&#x & ♦ 4 0 | 1 1 4 0 0 | 2 2 0 0 0 0 0 | * 8 * * * * * | 1 0 1 0
(..). (..). (xo). (ox).&#x ♦ 4 0 | 0 2 4 0 0 | 0 4 0 0 0 0 0 | * * 4 * * * * | 1 0 0 1
(x.)o (..). (..). (o.)x&#x & ♦ 2 2 | 1 0 0 4 1 | 0 0 2 0 2 0 0 | * * * 4 * * * | 0 0 2 0
(..). (..). (x.)x (o.)x&#x & ♦ 2 4 | 0 1 0 4 4 | 0 0 0 2 2 0 1 | * * * * 4 * * | 0 0 0 2
(xo)o (..). (..). (..).&#x & ♦ 3 1 | 1 0 2 3 0 | 1 0 1 0 0 2 0 | * * * * * 16 * | 0 1 1 0
(..). (..). (xo)x (..).&#x & ♦ 3 2 | 0 1 2 4 1 | 0 1 0 1 1 2 0 | * * * * * * 16 | 0 0 1 1
-----------------------------+-----+-------------+------------------+-----------------+--------
(xo). (ox). (xo). (ox).&#zx ♦ 8 0 | 4 4 16 0 0 | 16 16 0 0 0 0 0 | 4 8 4 0 0 0 0 | 1 * * *
(xo)o (ox)o (..). (..).&#x & ♦ 4 1 | 2 0 4 4 0 | 4 0 2 0 0 4 0 | 1 0 0 0 0 4 0 | * 4 * *
(xo)o (..). (..). (ox)x&#x & ♦ 4 2 | 1 1 4 6 1 | 2 2 2 1 2 4 0 | 0 1 0 1 0 2 2 | * * 8 *
(..). (..). (xo)x (ox)x&#x ♦ 4 4 | 0 2 4 8 4 | 0 4 0 4 4 4 1 | 0 0 1 0 2 0 4 | * * * 4
© 2004-2025 | top of page |