Acronym | ..., 5Y4-4T-6P3-sq-skew |
Name | skew-staggered shear-elongated 10Y4-8T-0 |
© | |
Confer |
|
External links |
This scaliform honeycomb is derived from 10Y4-8T-0 by squeezing in shearing layers of trips (considered as wedges or digonal cupola, pointing up resp. down). Those layers furthermore are to be used with skew axes. (Using parallel axes this same construction would result in 5Y4-4T-6P3-sq-para instead.)
(Because J. McNeill uses here ortho, to what in the original usage by N. Johnson would be gyro (and vice versa), I desided to avoid that naming conflict by using a corresponding english attribute instead.)
(N → ∞) 2N | 4 2 2 2 | 6 6 3 4 4 | 2 2 5 6 ---+-------------+----------------+---------- 2 | 4N * * * | 2 2 0 0 0 | 1 1 2 0 pyr. lac. 2 | * 2N * * | 0 0 2 2 0 | 0 0 0 4 wedge lac. 2 | * * 2N * | 2 0 0 2 2 | 1 0 2 3 parallels 2 | * * * 2N | 0 2 1 0 2 | 0 1 2 2 orthogonals ---+-------------+----------------+---------- 3 | 2 0 1 0 | 4N * * * * | 1 0 1 0 obl. tri. 3 | 2 0 0 1 | * 4N * * * | 0 1 1 0 obl. tri. 3 | 0 2 0 1 | * * 2N * * | 0 0 0 2 upr. tri. 4 | 0 2 2 0 | * * * 2N * | 0 0 0 2 wedge lac. 4 | 0 0 2 2 | * * * * 2N | 0 0 1 1 square grid ---+-------------+----------------+---------- 4 | 4 0 2 0 | 4 0 0 0 0 | N * * * para. tet 4 | 4 0 0 2 | 0 4 0 0 0 | * N * * ortho. tet 5 | 4 0 2 2 | 2 2 0 0 1 | * * 2N * squippy 6 | 0 4 3 2 | 0 0 2 2 1 | * * * 2N trip
© 2004-2024 | top of page |