Acronym | tah | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name |
tesseractihexadecachoron, bitruncated tesseract, bitruncated hexadecachoron, runcicantic tesseract | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cross sections |
© | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt(9/2) = 2.121320 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. toe | sqrt(2) = 1.414214 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. tut | 5/sqrt(8) = 1.767767 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex layers |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
_+-- x3x3o (tut) _+-- x3u3o ((x,u)-tut) x3o _+-- u3x3x ((u,x,x)-toe) u3o u3o x3x H3o x3x _+-- x3x3u (inv. (u,x,x)-toe) x3u H3x x3u _+-- o3u3x (inv. (x,u)-tut) u3u u3u u3x x3H u3x _+-- o3x3x (inv. tut) x3x o3H x3x o3u o3u o3x | | | | | | | | | +-- x3x4o (toe) | | | +------- o3u4o (u-co) | | +------------ o3x4q ((q,x)-tic) | +----------------- o3u4o (u-co) +---------------------- x3x4o (toe) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume | 307/6 = 51.166667 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 96, 192, 120, 24 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
Note that tah can be thought of as the external blend of 1 rit + 16 tetatuts + 8 coatoes. This decomposition is described as the degenerate segmentoteron oo3ox3xx4oo&#x. – Alternatively, although subdimensioanlly degenerate, tah can be decomposed into 1 thex + 16 tutas + 24 squascs + 8 octatoes according to xo3xx3ox4oo&#x.
Incidence matrix according to Dynkin symbol
o3x3x4o . . . . | 96 | 2 2 | 1 4 1 | 2 2 --------+----+-------+----------+----- . x . . | 2 | 96 * | 1 2 0 | 2 1 . . x . | 2 | * 96 | 0 2 1 | 1 2 --------+----+-------+----------+----- o3x . . | 3 | 3 0 | 32 * * | 2 0 . x3x . | 6 | 3 3 | * 64 * | 1 1 . . x4o | 4 | 0 4 | * * 24 | 0 2 --------+----+-------+----------+----- o3x3x . ♦ 12 | 12 6 | 4 4 0 | 16 * . x3x4o ♦ 24 | 12 24 | 0 8 6 | * 8 snubbed forms: o3β3x4o, o3x3β4o, o3β3β4o
o3x3x4/3o . . . . | 96 | 2 2 | 1 4 1 | 2 2 ----------+----+-------+----------+----- . x . . | 2 | 96 * | 1 2 0 | 2 1 . . x . | 2 | * 96 | 0 2 1 | 1 2 ----------+----+-------+----------+----- o3x . . | 3 | 3 0 | 32 * * | 2 0 . x3x . | 6 | 3 3 | * 64 * | 1 1 . . x4/3o | 4 | 0 4 | * * 24 | 0 2 ----------+----+-------+----------+----- o3x3x . ♦ 12 | 12 6 | 4 4 0 | 16 * . x3x4/3o ♦ 24 | 12 24 | 0 8 6 | * 8
o3/2x3x4o . . . . | 96 | 2 2 | 1 4 1 | 2 2 ----------+----+-------+----------+----- . x . . | 2 | 96 * | 1 2 0 | 2 1 . . x . | 2 | * 96 | 0 2 1 | 1 2 ----------+----+-------+----------+----- o3/2x . . | 3 | 3 0 | 32 * * | 2 0 . x3x . | 6 | 3 3 | * 64 * | 1 1 . . x4o | 4 | 0 4 | * * 24 | 0 2 ----------+----+-------+----------+----- o3/2x3x . ♦ 12 | 12 6 | 4 4 0 | 16 * . x3x4o ♦ 24 | 12 24 | 0 8 6 | * 8
o3/2x3x4/3o . . . . | 96 | 2 2 | 1 4 1 | 2 2 ------------+----+-------+----------+----- . x . . | 2 | 96 * | 1 2 0 | 2 1 . . x . | 2 | * 96 | 0 2 1 | 1 2 ------------+----+-------+----------+----- o3/2x . . | 3 | 3 0 | 32 * * | 2 0 . x3x . | 6 | 3 3 | * 64 * | 1 1 . . x4/3o | 4 | 0 4 | * * 24 | 0 2 ------------+----+-------+----------+----- o3/2x3x . ♦ 12 | 12 6 | 4 4 0 | 16 * . x3x4/3o ♦ 24 | 12 24 | 0 8 6 | * 8
x3x3x *b3o . . . . | 96 | 1 2 1 | 2 1 2 1 | 2 1 1 -----------+----+----------+-------------+------ x . . . | 2 | 48 * * | 2 1 0 0 | 2 1 0 . x . . | 2 | * 96 * | 1 0 1 1 | 1 1 1 . . x . | 2 | * * 48 | 0 1 2 0 | 2 0 1 -----------+----+----------+-------------+------ x3x . . | 6 | 3 3 0 | 32 * * * | 1 1 0 x . x . | 4 | 2 0 2 | * 24 * * | 2 0 0 . x3x . | 6 | 0 3 3 | * * 32 * | 1 0 1 . x . *b3o | 3 | 0 3 0 | * * * 32 | 0 1 1 -----------+----+----------+-------------+------ x3x3x . ♦ 24 | 12 12 12 | 4 6 4 0 | 8 * * x3x . *b3o ♦ 12 | 6 12 0 | 4 0 0 4 | * 8 * . x3x *b3o ♦ 12 | 0 12 6 | 0 0 4 4 | * * 8 snubbed forms: β3x3x *b3o, x3β3x *b3o, β3β3x *b3o, β3x3β *b3o, β3β3β *b3o
x3x3x *b3/2o . . . . | 96 | 1 2 1 | 2 1 2 1 | 2 1 1 -------------+----+----------+-------------+------ x . . . | 2 | 48 * * | 2 1 0 0 | 2 1 0 . x . . | 2 | * 96 * | 1 0 1 1 | 1 1 1 . . x . | 2 | * * 48 | 0 1 2 0 | 2 0 1 -------------+----+----------+-------------+------ x3x . . | 6 | 3 3 0 | 32 * * * | 1 1 0 x . x . | 4 | 2 0 2 | * 24 * * | 2 0 0 . x3x . | 6 | 0 3 3 | * * 32 * | 1 0 1 . x . *b3/2o | 3 | 0 3 0 | * * * 32 | 0 1 1 -------------+----+----------+-------------+------ x3x3x . ♦ 24 | 12 12 12 | 4 6 4 0 | 8 * * x3x . *b3/2o ♦ 12 | 6 12 0 | 4 0 0 4 | * 8 * . x3x *b3/2o ♦ 12 | 0 12 6 | 0 0 4 4 | * * 8
s4x3x3o demi( . . . . ) | 96 | 1 2 1 | 1 2 1 2 | 2 1 1 ----------------+----+----------+-------------+------ demi( . x . . ) | 2 | 48 * * | 1 2 0 0 | 2 1 0 demi( . . x . ) | 2 | * 96 * | 0 1 1 1 | 1 1 1 sefa( s4x . . ) | 2 | * * 48 | 1 0 0 2 | 2 0 1 ----------------+----+----------+-------------+------ s4x . . ♦ 4 | 2 0 2 | 24 * * * | 2 0 0 demi( . x3x . ) | 6 | 3 3 0 | * 32 * * | 1 1 0 demi( . . x3o ) | 3 | 0 3 0 | * * 32 * | 0 1 1 sefa( s4x3x . ) | 6 | 0 3 3 | * * * 32 | 1 0 1 ----------------+----+----------+-------------+------ s4x3x . ♦ 24 | 12 12 12 | 6 4 0 4 | 8 * * demi( . x3x3o ) ♦ 12 | 6 12 0 | 0 4 4 0 | * 8 * sefa( s4x3x3o ) ♦ 12 | 0 12 6 | 0 0 4 4 | * * 8 starting figure: x4x3x3o
s4o3x3x demi( . . . . ) | 96 | 1 2 1 | 1 1 2 2 | 1 1 2 ----------------+----+----------+-------------+------ s4o . . ♦ 2 | 48 * * | 1 0 0 2 | 1 0 2 demi( . . x . ) | 2 | * 96 * | 0 1 1 1 | 1 1 1 demi( . . . x ) | 2 | * * 48 | 1 0 2 0 | 0 1 2 ----------------+----+----------+-------------+------ s4o . x | 4 | 2 0 2 | 24 * * * | 0 0 2 demi( . o3x . ) | 3 | 0 3 0 | * 32 * * | 1 1 0 demi( . . x3x ) | 6 | 0 3 3 | * * 32 * | 0 1 1 sefa( s4o3x . ) | 6 | 3 3 0 | * * * 32 | 1 0 1 ----------------+----+----------+-------------+------ s4o3x . ♦ 12 | 6 12 0 | 0 4 0 4 | 8 * * demi( . o3x3x ) ♦ 12 | 0 12 6 | 0 4 4 0 | * 8 * sefa( s4o3x3x ) ♦ 24 | 12 12 12 | 6 0 4 4 | * * 8 starting figure: x4o3x3x
xooox3xuxux4ooqoo&#xt → all heights = 1/sqrt(2) = 0.707107 (toe || pseudo u-co || pseudo (q,x)-tic || pseudo u-co || toe) o....3o....4o.... | 24 * * * * | 1 2 1 0 0 0 0 0 0 | 2 1 1 2 0 0 0 0 0 0 | 1 2 1 0 0 .o...3.o...4.o... | * 12 * * * | 0 0 2 2 0 0 0 0 0 | 0 0 1 4 1 0 0 0 0 0 | 0 2 2 0 0 ..o..3..o..4..o.. | * * 24 * * | 0 0 0 1 2 1 0 0 0 | 0 0 0 2 1 1 2 0 0 0 | 0 1 2 1 0 ...o.3...o.4...o. | * * * 12 * | 0 0 0 0 0 2 2 0 0 | 0 0 0 0 1 0 4 1 0 0 | 0 0 2 2 0 ....o3....o4....o | * * * * 24 | 0 0 0 0 0 0 1 1 2 | 0 0 0 0 0 0 2 1 2 1 | 0 0 1 2 1 ----------------------+----------------+----------------------------+--------------------------+---------- x.... ..... ..... | 2 0 0 0 0 | 12 * * * * * * * * | 2 0 1 0 0 0 0 0 0 0 | 1 2 0 0 0 ..... x.... ..... | 2 0 0 0 0 | * 24 * * * * * * * | 1 1 0 1 0 0 0 0 0 0 | 1 1 1 0 0 oo...3oo...4oo...&#x | 1 1 0 0 0 | * * 24 * * * * * * | 0 0 1 2 0 0 0 0 0 0 | 0 2 1 0 0 .oo..3.oo..4.oo..&#x | 0 1 1 0 0 | * * * 24 * * * * * | 0 0 0 2 1 0 0 0 0 0 | 0 1 2 0 0 ..... ..x.. ..... | 0 0 2 0 0 | * * * * 24 * * * * | 0 0 0 1 0 1 1 0 0 0 | 0 1 1 1 0 ..oo.3..oo.4..oo.&#x | 0 0 1 1 0 | * * * * * 24 * * * | 0 0 0 0 1 0 2 0 0 0 | 0 0 2 1 0 ...oo3...oo4...oo&#x | 0 0 0 1 1 | * * * * * * 24 * * | 0 0 0 0 0 0 2 1 0 0 | 0 0 1 2 0 ....x ..... ..... | 0 0 0 0 2 | * * * * * * * 12 * | 0 0 0 0 0 0 0 1 2 0 | 0 0 0 2 1 ..... ....x ..... | 0 0 0 0 2 | * * * * * * * * 24 | 0 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1 ----------------------+----------------+----------------------------+--------------------------+---------- x....3x.... ..... | 6 0 0 0 0 | 3 3 0 0 0 0 0 0 0 | 8 * * * * * * * * * | 1 1 0 0 0 ..... x....4o.... | 4 0 0 0 0 | 0 4 0 0 0 0 0 0 0 | * 6 * * * * * * * * | 1 0 1 0 0 xo... ..... .....&#x | 2 1 0 0 0 | 1 0 2 0 0 0 0 0 0 | * * 12 * * * * * * * | 0 2 0 0 0 ..... xux.. .....&#xt | 2 2 2 0 0 | 0 1 2 2 1 0 0 0 0 | * * * 24 * * * * * * | 0 1 1 0 0 ..... ..... .oqo.&#xt | 0 1 2 1 0 | 0 0 0 2 0 2 0 0 0 | * * * * 12 * * * * * | 0 0 2 0 0 ..o..3..x.. ..... | 0 0 3 0 0 | 0 0 0 0 3 0 0 0 0 | * * * * * 8 * * * * | 0 1 0 1 0 ..... ..xux .....&#xt | 0 0 2 2 2 | 0 0 0 0 1 2 2 0 1 | * * * * * * 24 * * * | 0 0 1 1 0 ...ox ..... .....&#x | 0 0 0 1 2 | 0 0 0 0 0 0 2 1 0 | * * * * * * * 12 * * | 0 0 0 2 0 ....x3....x ..... | 0 0 0 0 6 | 0 0 0 0 0 0 0 3 3 | * * * * * * * * 8 * | 0 0 0 1 1 ..... ....x4....o | 0 0 0 0 4 | 0 0 0 0 0 0 0 0 4 | * * * * * * * * * 6 | 0 0 1 0 1 ----------------------+----------------+----------------------------+--------------------------+---------- x....3x....4o.... ♦ 24 0 0 0 0 | 12 24 0 0 0 0 0 0 0 | 8 6 0 0 0 0 0 0 0 0 | 1 * * * * xoo..3xux.. .....&#xt ♦ 6 3 3 0 0 | 3 3 6 3 3 0 0 0 0 | 1 0 3 3 0 1 0 0 0 0 | * 8 * * * ..... xuxux4ooqoo&#xt ♦ 4 4 8 4 4 | 0 4 4 8 4 8 4 0 4 | 0 1 0 4 4 0 4 0 0 1 | * * 6 * * ..oox3..xux .....&#xt ♦ 0 0 3 3 6 | 0 0 0 0 3 3 6 3 3 | 0 0 0 0 0 1 3 3 1 0 | * * * 8 * ....x3....x4....o ♦ 0 0 0 0 24 | 0 0 0 0 0 0 0 12 24 | 0 0 0 0 0 0 0 0 8 6 | * * * * 1
or o....3o....4o.... & | 48 * * | 1 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 .o...3.o...4.o... & | * 24 * | 0 0 2 2 0 | 0 0 1 4 1 0 | 0 2 2 ..o..3..o..4..o.. | * * 24 | 0 0 0 2 2 | 0 0 0 4 1 1 | 0 2 2 -------------------------+----------+----------------+------------------+------- x.... ..... ..... & | 2 0 0 | 24 * * * * | 2 0 1 0 0 0 | 1 2 0 ..... x.... ..... & | 2 0 0 | * 48 * * * | 1 1 0 1 0 0 | 1 1 1 oo...3oo...4oo...&#x & | 1 1 0 | * * 48 * * | 0 0 1 2 0 0 | 0 2 1 .oo..3.oo..4.oo..&#x & | 0 1 1 | * * * 48 * | 0 0 0 2 1 0 | 0 1 2 ..... ..x.. ..... | 0 0 2 | * * * * 24 | 0 0 0 2 0 1 | 0 2 1 -------------------------+----------+----------------+------------------+------- x....3x.... ..... & | 6 0 0 | 3 3 0 0 0 | 16 * * * * * | 1 1 0 ..... x....4o.... & | 4 0 0 | 0 4 0 0 0 | * 12 * * * * | 1 0 1 xo... ..... .....&#x & | 2 1 0 | 1 0 2 0 0 | * * 24 * * * | 0 2 0 ..... xux.. .....&#xt & | 2 2 2 | 0 1 2 2 1 | * * * 48 * * | 0 1 1 ..... ..... .oqo.&#xt | 0 2 2 | 0 0 0 4 0 | * * * * 12 * | 0 0 2 ..o..3..x.. ..... | 0 0 3 | 0 0 0 0 3 | * * * * * 8 | 0 2 0 -------------------------+----------+----------------+------------------+------- x....3x....4o.... & ♦ 24 0 0 | 12 24 0 0 0 | 8 6 0 0 0 0 | 2 * * xoo..3xux.. .....&#xt & ♦ 6 3 3 | 3 3 6 3 3 | 1 0 3 3 0 1 | * 16 * ..... xuxux4ooqoo&#xt ♦ 8 8 8 | 0 8 8 16 4 | 0 2 0 8 4 0 | * * 6
xxuxoo3xuxxux3ooxuxx&#xt → all heights = 1/sqrt(2) = 0.707107 (tut || pseudo (x,u)-tut || pseudo (u,x,x)-toe || pseudo inv (u,x,x)-toe || pseudo inv (x,u)-tut || inv tut) o.....3o.....3o..... | 12 * * * * * | 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 | 2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 | 1 1 2 0 0 0 0 .o....3.o....3.o.... | * 12 * * * * | 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 | 0 0 1 2 1 2 0 0 0 0 0 0 0 0 0 | 0 1 2 1 0 0 0 ..o...3..o...3..o... | * * 24 * * * | 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 | 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 | 0 1 1 1 1 0 0 ...o..3...o..3...o.. | * * * 24 * * | 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 | 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 | 0 0 1 1 1 1 0 ....o.3....o.3....o. | * * * * 12 * | 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 | 0 0 0 0 0 0 0 0 2 0 1 2 1 0 0 | 0 0 0 1 2 1 0 .....o3.....o3.....o | * * * * * 12 | 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 | 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2 | 0 0 0 0 2 1 1 -------------------------+-------------------+------------------------------------------+--------------------------------------+-------------- x..... ...... ...... | 2 0 0 0 0 0 | 6 * * * * * * * * * * * * * * | 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 0 2 0 0 0 0 ...... x..... ...... | 2 0 0 0 0 0 | * 12 * * * * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 oo....3oo....3oo....&#x | 1 1 0 0 0 0 | * * 12 * * * * * * * * * * * * | 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 | 0 1 2 0 0 0 0 .x.... ...... ...... | 0 2 0 0 0 0 | * * * 6 * * * * * * * * * * * | 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 | 0 0 2 1 0 0 0 .oo...3.oo...3.oo...&#x | 0 1 1 0 0 0 | * * * * 24 * * * * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 ...... ..x... ...... | 0 0 2 0 0 0 | * * * * * 12 * * * * * * * * * | 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 | 0 1 1 0 1 0 0 ...... ...... ..x... | 0 0 2 0 0 0 | * * * * * * 12 * * * * * * * * | 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 | 0 1 0 1 1 0 0 ..oo..3..oo..3..oo..&#x | 0 0 1 1 0 0 | * * * * * * * 24 * * * * * * * | 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 | 0 0 1 1 1 0 0 ...x.. ...... ...... | 0 0 0 2 0 0 | * * * * * * * * 12 * * * * * * | 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 | 0 0 1 1 0 1 0 ...... ...x.. ...... | 0 0 0 2 0 0 | * * * * * * * * * 12 * * * * * | 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 | 0 0 1 0 1 1 0 ...oo.3...oo.3...oo.&#x | 0 0 0 1 1 0 | * * * * * * * * * * 24 * * * * | 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 0 1 1 1 0 ...... ...... ....x. | 0 0 0 0 2 0 | * * * * * * * * * * * 6 * * * | 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 | 0 0 0 1 2 0 0 ....oo3....oo3....oo&#x | 0 0 0 0 1 1 | * * * * * * * * * * * * 12 * * | 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 | 0 0 0 0 2 1 0 ...... .....x ...... | 0 0 0 0 0 2 | * * * * * * * * * * * * * 12 * | 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 0 1 1 1 ...... ...... .....x | 0 0 0 0 0 2 | * * * * * * * * * * * * * * 6 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 | 0 0 0 0 2 0 1 -------------------------+-------------------+------------------------------------------+--------------------------------------+-------------- x.....3x..... ...... | 6 0 0 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 * * * * * * * * * * * * * * | 1 0 1 0 0 0 0 ...... x.....3o..... | 3 0 0 0 0 0 | 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 | * 4 * * * * * * * * * * * * * | 1 1 0 0 0 0 0 xx.... ...... ......&#x | 2 2 0 0 0 0 | 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 | * * 6 * * * * * * * * * * * * | 0 0 2 0 0 0 0 ...... xux... ......&#xt | 2 2 2 0 0 0 | 0 1 2 0 2 1 0 0 0 0 0 0 0 0 0 | * * * 12 * * * * * * * * * * * | 0 1 1 0 0 0 0 ...... ...... .ox...&#x | 0 1 2 0 0 0 | 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 | * * * * 12 * * * * * * * * * * | 0 1 0 1 0 0 0 .xux.. ...... ......&#xt | 0 2 2 2 0 0 | 0 0 0 1 2 0 0 2 1 0 0 0 0 0 0 | * * * * * 12 * * * * * * * * * | 0 0 1 1 0 0 0 ...... ..x...3..x... | 0 0 6 0 0 0 | 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 | * * * * * * 4 * * * * * * * * | 0 1 0 0 1 0 0 ...... ..xx.. ......&#x | 0 0 2 2 0 0 | 0 0 0 0 0 1 0 2 0 1 0 0 0 0 0 | * * * * * * * 12 * * * * * * * | 0 0 1 0 1 0 0 ...... ...... ..xux.&#xt | 0 0 2 2 2 0 | 0 0 0 0 0 0 1 2 0 0 2 1 0 0 0 | * * * * * * * * 12 * * * * * * | 0 0 0 1 1 0 0 ...x..3...x.. ...... | 0 0 0 6 0 0 | 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 | * * * * * * * * * 4 * * * * * | 0 0 1 0 0 1 0 ...xo. ...... ......&#x | 0 0 0 2 1 0 | 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 | * * * * * * * * * * 12 * * * * | 0 0 0 1 0 1 0 ...... ...xux ......&#xt | 0 0 0 2 2 2 | 0 0 0 0 0 0 0 0 0 1 2 0 2 1 0 | * * * * * * * * * * * 12 * * * | 0 0 0 0 1 1 0 ...... ...... ....xx&#x | 0 0 0 0 2 2 | 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 | * * * * * * * * * * * * 6 * * | 0 0 0 0 2 0 0 .....o3.....x ...... | 0 0 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 | * * * * * * * * * * * * * 4 * | 0 0 0 0 0 1 1 ...... .....x3.....x | 0 0 0 0 0 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 | * * * * * * * * * * * * * * 4 | 0 0 0 0 1 0 1 -------------------------+-------------------+------------------------------------------+--------------------------------------+-------------- x.....3x.....3o..... ♦ 12 0 0 0 0 0 | 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 | 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * ...... xux...3oox...&#xt ♦ 3 3 6 0 0 0 | 0 3 3 0 6 3 3 0 0 0 0 0 0 0 0 | 0 1 0 3 3 0 1 0 0 0 0 0 0 0 0 | * 4 * * * * * xxux..3xuxx.. ......&#xt ♦ 6 6 6 6 0 0 | 3 3 6 3 6 3 0 6 3 3 0 0 0 0 0 | 1 0 3 3 0 3 0 3 0 1 0 0 0 0 0 | * * 4 * * * * .xuxo. ...... .oxux.&#xt ♦ 0 2 4 4 2 0 | 0 0 0 1 4 0 2 4 2 0 4 1 0 0 0 | 0 0 0 0 4 4 0 0 4 0 4 0 0 0 0 | * * * 6 * * * ...... ..xxux3..xuxx&#xt ♦ 0 0 6 6 6 6 | 0 0 0 0 0 3 3 6 0 3 6 3 6 3 3 | 0 0 0 0 0 0 1 3 3 0 0 3 3 0 1 | * * * * 4 * * ...xoo3...xux ......&#xt ♦ 0 0 0 6 3 3 | 0 0 0 0 0 0 0 0 3 3 6 0 3 3 0 | 0 0 0 0 0 0 0 0 0 1 3 3 0 1 0 | * * * * * 4 * .....o3.....x3.....x ♦ 0 0 0 0 0 12 | 0 0 0 0 0 0 0 0 0 0 0 0 0 12 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 | * * * * * * 1
or o.....3o.....3o..... & | 24 * * | 1 2 1 0 0 0 0 0 | 2 1 1 2 0 0 0 0 | 1 1 2 0 .o....3.o....3.o.... & | * 24 * | 0 0 1 1 2 0 0 0 | 0 0 1 2 1 2 0 0 | 0 1 2 1 ..o...3..o...3..o... & | * * 48 | 0 0 0 0 1 1 1 1 | 0 0 0 1 1 2 1 1 | 0 1 2 1 ----------------------------+----------+-------------------------+----------------------+-------- x..... ...... ...... & | 2 0 0 | 12 * * * * * * * | 2 0 1 0 0 0 0 0 | 1 0 2 0 ...... x..... ...... & | 2 0 0 | * 24 * * * * * * | 1 1 0 1 0 0 0 0 | 1 1 1 0 oo....3oo....3oo....&#x & | 1 1 0 | * * 24 * * * * * | 0 0 1 2 0 0 0 0 | 0 1 2 0 .x.... ...... ...... & | 0 2 0 | * * * 12 * * * * | 0 0 1 0 0 2 0 0 | 0 0 2 1 .oo...3.oo...3.oo...&#x & | 0 1 1 | * * * * 48 * * * | 0 0 0 1 1 1 0 0 | 0 1 1 1 ...... ..x... ...... & | 0 0 2 | * * * * * 24 * * | 0 0 0 1 0 0 1 1 | 0 1 2 0 ...... ...... ..x... & | 0 0 2 | * * * * * * 24 * | 0 0 0 0 1 1 1 0 | 0 1 1 1 ..oo..3..oo..3..oo..&#x | 0 0 2 | * * * * * * * 24 | 0 0 0 0 0 2 0 1 | 0 0 2 1 ----------------------------+----------+-------------------------+----------------------+-------- x.....3x..... ...... & | 6 0 0 | 3 3 0 0 0 0 0 0 | 8 * * * * * * * | 1 0 1 0 ...... x.....3o..... & | 3 0 0 | 0 3 0 0 0 0 0 0 | * 8 * * * * * * | 1 1 0 0 xx.... ...... ......&#x & | 2 2 0 | 1 0 2 1 0 0 0 0 | * * 12 * * * * * | 0 0 2 0 ...... xux... ......&#xt & | 2 2 2 | 0 1 2 0 2 1 0 0 | * * * 24 * * * * | 0 1 1 0 ...... ...... .ox...&#x & | 0 1 2 | 0 0 0 0 2 0 1 0 | * * * * 24 * * * | 0 1 0 1 .xux.. ...... ......&#xt & | 0 2 4 | 0 0 0 1 2 0 1 2 | * * * * * 24 * * | 0 0 1 1 ...... ..x...3..x... & | 0 0 6 | 0 0 0 0 0 3 3 0 | * * * * * * 8 * | 0 1 1 0 ...... ..xx.. ......&#x | 0 0 4 | 0 0 0 0 0 2 0 2 | * * * * * * * 12 | 0 0 2 0 ----------------------------+----------+-------------------------+----------------------+-------- x.....3x.....3o..... & ♦ 12 0 0 | 6 12 0 0 0 0 0 0 | 4 4 0 0 0 0 0 0 | 2 * * * ...... xux...3oox...&#xt & ♦ 3 3 6 | 0 3 3 0 6 3 3 0 | 0 1 0 3 3 0 1 0 | * 8 * * xxux..3xuxx.. ......&#xt & ♦ 6 6 12 | 3 3 6 3 6 6 3 6 | 1 0 3 3 0 3 1 3 | * * 8 * .xuxo. ...... .oxux.&#xt ♦ 0 4 8 | 0 0 0 2 8 0 4 4 | 0 0 0 0 4 4 0 0 | * * * 6
© 2004-2025 | top of page |