Acronym xedrag
Name hexeractidiminished rectified hexacontatetrapeton,
square cuboctahedroltriate,
scaliform dodecadiminished rectified hexacontatetrapeton
Circumradius 1
Lace city
in approx. ASCII-art
    N    
         		where:
N   T   N		N = xo4oo ox4oo&#x (hex)
         		T = x4o x4o (tes)
    N    
Coordinates
  • (1, 1, 1, 1, 0, 0)/2       & all sign changes
  • (1, 1, 0, 0, 1, 1)/2       & all sign changes
  • (0, 0, 1, 1, 1, 1)/2       & all sign changes
Face vector 48, 288, 688, 768, 396, 76
Confer
uniform relative:
rag  
related CRFs:
raddirag   redscox  
general polytopal classes:
scaliform  
External
links
polytopewiki  

This polypeton is obtained from rag when the vertices of a vertex-inscribed gee would be chopped off. Alternativevely the same effect would be obtained if the intersection of rag and an accordingly scaled hexeract is considered.

(Note that there is a further quite highly symmetrical dodecadiminished rag as well, although that one then isn't scaliform. That one would be obtained by diminishing at the vertices of an inscribed co or as intersection with a rad (times codimensional space). Accordingly that one then is known as raddirag.)


Incidence matrix according to Dynkin symbol

xxo4ooo xox4ooo oxx4ooo&#zx   → height = 0
(tegum sum of 3 tri-ortho-aligned tes)

o..4o.. o..4o.. o..4o..     & | 48 |  4   8 |  4  16  24  4 |  48  16  20 |  32  2  32 |  4 16
------------------------------+----+--------+---------------+-------------+------------+------
x.. ... ... ... ... ...     & |  2 | 96   * |  2   4   4  0 |  20   4   4 |  16  1  12 |  3  8
oo.4oo. oo.4oo. oo.4oo.&#x  & |  2 |  * 192 |  0   2   4  1 |   8   4   6 |   8  1  12 |  2  8
------------------------------+----+--------+---------------+-------------+------------+------
x.. ... x.. ... ... ...     & |  4 |  4   0 | 48   *   *  * |   8   0   0 |   8  0   4 |  2  4
xx. ... ... ... ... ...&#x  & |  4 |  2   2 |  * 192   *  * |   4   0   1 |   4  0   4 |  1  4
... ... xo. ... ... ...&#x  & |  3 |  1   2 |  *   * 384  * |   2   2   1 |   4  1   4 |  2  4
ooo4ooo ooo4ooo ooo4ooo&#x    |  3 |  0   3 |  *   *   * 64    0   0   6 |   0  0  12 |  0  8
------------------------------+----+--------+---------------+-------------+------------+------
xx. ... xo. ... ... ...&#x  &   6 |  5   4 |  1   2   2  0 | 384   *   * |   2  0   1 |  1  2
... ... xo. ... ox. ...&#x  &   4 |  2   4 |  0   0   4  0 |   * 192   * |   2  1   1 |  2  2
xxo ... ... ... ... ...&#x  &   5 |  2   6 |  0   1   2  2 |   *   * 192 |   0  0   4 |  0  4
------------------------------+----+--------+---------------+-------------+------------+------
xx. ... xo. ... ox. ...&#x  &   8 |  8   8 |  2   4   8  0 |   4   2   0 | 192  *   * |  1  1
... ... xo.4oo. ox.4oo.&#zx &   8 |  8  16 |  0   0  32  0 |   0  16   0 |   * 12   * |  2  0
xxo ... xox ... ... ...&#x  &   8 |  6  12 |  1   4   8  4 |   2   1   4 |   *  * 192 |  0  2
------------------------------+----+--------+---------------+-------------+------------+------
xx. ... xo.4oo. ox.4oo.&#zx &  16 | 24  32 |  8  16  64  0 |  32  32   0 |  16  2   0 | 12  *
xxo ... xox ... oxx ...&#x     12 | 12  24 |  3  12  24  8 |  12   6  12 |   3  0   6 |  * 64

xxo xxo xox xox oxx oxx&#zx   → height = 0
(tegum sum of 3 tri-ortho-aligned tes)

...

© 2004-2025
top of page