Acronym wavhiddix
Name sphenoverted hecatonicosadishexacosachoron
Circumradius sqrt[15+6 sqrt(5)] = 5.330704
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: oct sidditdid siid tid tut
rawvid tixady 60012001200
wavhiddix 60001200600
& others)
Face vector 3600, 10800, 7920, 1320
Confer
general polytopal classes:
Wythoffian polychora  
External
links
hedrondude   polytopewiki   WikiChoron

As abstract polytope wavhiddix is isomorphic to rawvhiddix, thereby replacing pentagrams by pentagons, respectively siid by giid.


Incidence matrix according to Dynkin symbol

o3x3x5/2o3*b

. . .   .    | 3600 |    4    2 |    2    4    2   1 |   2   1   2
-------------+------+-----------+--------------------+------------
. x .   .    |    2 | 7200    * |    1    1    1   0 |   1   1   1
. . x   .    |    2 |    * 3600 |    0    2    0   1 |   1   0   2
-------------+------+-----------+--------------------+------------
o3x .   .    |    3 |    3    0 | 2400    *    *   * |   1   1   0
. x3x   .    |    6 |    3    3 |    * 2400    *   * |   1   0   1
. x .   o3*b |    3 |    3    0 |    *    * 2400   * |   0   1   1
. . x5/2o    |    5 |    0    5 |    *    *    * 720 |   0   0   2
-------------+------+-----------+--------------------+------------
o3x3x   .       12 |   12    6 |    4    4    0   0 | 600   *   *
o3x .   o3*b     6 |   12    0 |    4    0    4   0 |   * 600   *
. x3x5/2o3*b    60 |   60   60 |    0   20   20  12 |   *   * 120

o3x3x5/3o3/2*b

. . .   .      | 3600 |    4    2 |    2    4    2   1 |   2   1   2
---------------+------+-----------+--------------------+------------
. x .   .      |    2 | 7200    * |    1    1    1   0 |   1   1   1
. . x   .      |    2 |    * 3600 |    0    2    0   1 |   1   0   2
---------------+------+-----------+--------------------+------------
o3x .   .      |    3 |    3    0 | 2400    *    *   * |   1   1   0
. x3x   .      |    6 |    3    3 |    * 2400    *   * |   1   0   1
. x .   o3/2*b |    3 |    3    0 |    *    * 2400   * |   0   1   1
. . x5/3o      |    5 |    0    5 |    *    *    * 720 |   0   0   2
---------------+------+-----------+--------------------+------------
o3x3x   .         12 |   12    6 |    4    4    0   0 | 600   *   *
o3x .   o3/2*b     6 |   12    0 |    4    0    4   0 |   * 600   *
. x3x5/3o3/2*b    60 |   60   60 |    0   20   20  12 |   *   * 120

o3/2x3x5/2o3*b

.   . .   .    | 3600 |    4    2 |    2    4    2   1 |   2   1   2
---------------+------+-----------+--------------------+------------
.   x .   .    |    2 | 7200    * |    1    1    1   0 |   1   1   1
.   . x   .    |    2 |    * 3600 |    0    2    0   1 |   1   0   2
---------------+------+-----------+--------------------+------------
o3/2x .   .    |    3 |    3    0 | 2400    *    *   * |   1   1   0
.   x3x   .    |    6 |    3    3 |    * 2400    *   * |   1   0   1
.   x .   o3*b |    3 |    3    0 |    *    * 2400   * |   0   1   1
.   . x5/2o    |    5 |    0    5 |    *    *    * 720 |   0   0   2
---------------+------+-----------+--------------------+------------
o3/2x3x   .       12 |   12    6 |    4    4    0   0 | 600   *   *
o3/2x .   o3*b     6 |   12    0 |    4    0    4   0 |   * 600   *
.   x3x5/2o3*b    60 |   60   60 |    0   20   20  12 |   *   * 120

o3/2x3x5/3o3/2*b

.   . .   .      | 3600 |    4    2 |    2    4    2   1 |   2   1   2
-----------------+------+-----------+--------------------+------------
.   x .   .      |    2 | 7200    * |    1    1    1   0 |   1   1   1
.   . x   .      |    2 |    * 3600 |    0    2    0   1 |   1   0   2
-----------------+------+-----------+--------------------+------------
o3/2x .   .      |    3 |    3    0 | 2400    *    *   * |   1   1   0
.   x3x   .      |    6 |    3    3 |    * 2400    *   * |   1   0   1
.   x .   o3/2*b |    3 |    3    0 |    *    * 2400   * |   0   1   1
.   . x5/3o      |    5 |    0    5 |    *    *    * 720 |   0   0   2
-----------------+------+-----------+--------------------+------------
o3/2x3x   .         12 |   12    6 |    4    4    0   0 | 600   *   *
o3/2x .   o3/2*b     6 |   12    0 |    4    0    4   0 |   * 600   *
.   x3x5/3o3/2*b    60 |   60   60 |    0   20   20  12 |   *   * 120

o3x3o5β

both( . . . . ) | 3600 |    4    2 |    2    2   1    4 |   1   2   2
----------------+------+-----------+--------------------+------------
both( . x . . ) |    2 | 7200    * |    1    1   0    1 |   1   1   1
sefa( . . o5β ) |    2 |    * 3600 |    0    0   1    2 |   0   2   1
----------------+------+-----------+--------------------+------------
both( o3x . . ) |    3 |    3    0 | 2400    *   *    * |   1   0   1
both( . x3o . ) |    3 |    3    0 |    * 2400   *    * |   1   1   0
      . . o5β       5 |    0    5 |    *    * 720    * |   0   2   0
sefa( . x3o5β ) |    6 |    3    3 |    *    *   * 2400 |   0   1   1
----------------+------+-----------+--------------------+------------
both( o3x3o . )     6 |   12    0 |    4    4   0    0 | 600   *   *
      . x3o5β      60 |   60   60 |    0   20  12   20 |   * 120   *
sefa( o3x3o5β )    12 |   12    6 |    4    0   0    4 |   *   * 600

starting figure: o3x3o5x

© 2004-2024
top of page