Acronym | bitettut (alt.: pabex gee) |
Name |
bi - (tetrahedron, truncated tetrahedron)-duoprism, partially bi-expanded hexacontitetrapeton |
Circumradius | sqrt(7)/2 = 1.322876 |
Face vector | 96, 432, 808, 780, 388, 80 |
Confer |
This polypeton could be derived from gee in its representation oo3ox3oo oo3xo3oo&#zx as a partial biexpansion. However gee also allows for the representation xo3oo4oo ox3oo4oo&#zx and therefore also bicotoe could be attributed with that description, i.e. that one is not specific enough. It was just that this polyteron in here was considered first and thence the usage of "pabex gee" here has some historic relevance only.
Incidence matrix according to Dynkin symbol
xx3ox3oo xx3xo3oo&#zx → height = 0 (tegum sum of 2 alternated tettuts) o.3o.3o. o.3o.3o. & | 96 | 3 1 2 3 | 3 3 6 2 1 6 9 | 1 3 6 6 3 9 3 9 4 6 | 1 2 6 3 9 12 4 5 | 2 1 6 5 1 ------------------------+----+---------------+-------------------------+---------------------------------+-------------------------+------------- x. .. .. .. .. .. & | 2 | 144 * * * | 2 1 2 0 0 1 0 | 1 2 4 2 1 2 1 2 0 0 | 1 2 4 2 4 4 1 0 | 2 1 4 2 0 .. .. .. x. .. .. & | 2 | * 48 * * | 0 3 0 2 0 3 0 | 0 3 0 6 0 6 3 3 0 0 | 1 0 6 0 9 6 1 0 | 2 0 6 2 0 .. .. .. .. x. .. & | 2 | * * 96 * | 0 0 3 1 1 0 3 | 0 0 3 3 3 3 0 3 3 3 | 0 1 3 3 3 6 3 4 | 1 1 3 4 1 oo3oo3oo oo3oo3oo&#x | 2 | * * * 144 | 0 0 0 0 0 2 4 | 0 0 0 0 0 4 1 4 2 4 | 0 0 0 0 4 8 2 4 | 0 0 4 4 1 ------------------------+----+---------------+-------------------------+---------------------------------+-------------------------+------------- x.3o. .. .. .. .. & | 3 | 3 0 0 0 | 96 * * * * * * | 1 1 2 0 0 1 0 0 0 0 | 1 2 2 1 1 2 0 0 | 2 1 2 1 0 x. .. .. x. .. .. & | 4 | 2 2 0 0 | * 72 * * * * * | 0 2 0 2 0 0 1 0 0 0 | 1 0 4 0 4 0 0 0 | 2 0 4 0 0 x. .. .. .. x. .. & | 4 | 2 0 2 0 | * * 144 * * * * | 0 0 2 1 1 0 0 1 0 0 | 0 1 2 2 1 2 1 0 | 1 1 2 2 0 .. .. .. x.3x. .. & | 6 | 0 3 3 0 | * * * 32 * * * | 0 0 0 3 0 3 0 0 0 0 | 0 0 3 0 3 3 0 0 | 1 0 3 1 0 .. .. .. .. x.3o. & | 3 | 0 0 3 0 | * * * * 32 * * | 0 0 0 0 3 0 0 0 3 0 | 0 0 0 3 0 0 3 3 | 0 1 0 3 1 xx .. .. .. .. ..&#x & | 4 | 1 1 0 2 | * * * * * 144 * | 0 0 0 0 0 2 1 2 0 0 | 0 0 0 0 2 4 1 0 | 0 0 4 2 0 .. ox .. .. .. ..&#x & | 3 | 0 0 1 2 | * * * * * * 288 | 0 0 0 0 0 1 0 1 1 2 | 0 0 0 0 1 4 1 3 | 0 0 2 3 1 ------------------------+----+---------------+-------------------------+---------------------------------+-------------------------+------------- x.3o.3o. .. .. .. & ♦ 4 | 6 0 0 0 | 4 0 0 0 0 0 0 | 24 * * * * * * * * * | 1 2 0 0 0 0 0 0 | 2 1 0 0 0 x.3o. .. x. .. .. & ♦ 6 | 6 3 0 0 | 2 3 0 0 0 0 0 | * 48 * * * * * * * * | 1 0 2 0 1 0 0 0 | 2 0 2 0 0 x.3o. .. .. x. .. & ♦ 6 | 6 0 3 0 | 2 0 3 0 0 0 0 | * * 96 * * * * * * * | 0 1 1 1 0 1 0 0 | 1 1 1 1 0 x. .. .. x.3x. .. & ♦ 12 | 6 6 6 0 | 0 3 3 2 0 0 0 | * * * 48 * * * * * * | 0 0 2 0 1 0 0 0 | 1 0 2 0 0 x. .. .. .. x.3o. & ♦ 6 | 3 0 6 0 | 0 0 3 0 2 0 0 | * * * * 48 * * * * * | 0 0 0 2 0 0 1 0 | 0 1 0 2 0 xx3ox .. .. .. ..&#x & ♦ 9 | 3 3 3 6 | 1 0 0 1 0 3 3 | * * * * * 96 * * * * | 0 0 0 0 1 2 0 0 | 0 0 2 1 0 xx .. .. xx .. ..&#x ♦ 8 | 4 4 0 4 | 0 2 0 0 0 4 0 | * * * * * * 36 * * * | 0 0 0 0 4 0 0 0 | 0 0 4 0 0 xx .. .. .. xo ..&#x & ♦ 6 | 2 1 2 4 | 0 0 1 0 0 2 2 | * * * * * * * 144 * * | 0 0 0 0 1 2 1 0 | 0 0 2 2 0 .. ox3oo .. .. ..&#x & ♦ 4 | 0 0 3 3 | 0 0 0 0 1 0 3 | * * * * * * * * 96 * | 0 0 0 0 0 0 1 2 | 0 0 0 2 1 .. ox .. .. xo ..&#x ♦ 4 | 0 0 2 4 | 0 0 0 0 0 0 4 | * * * * * * * * * 144 | 0 0 0 0 0 2 0 2 | 0 0 1 2 1 ------------------------+----+---------------+-------------------------+---------------------------------+-------------------------+------------- x.3o.3o. x. .. .. & ♦ 8 | 12 4 0 0 | 8 6 0 0 0 0 0 | 2 4 0 0 0 0 0 0 0 0 | 12 * * * * * * * | 2 0 0 0 0 x.3o.3o. .. x. .. & ♦ 8 | 12 0 4 0 | 8 0 6 0 0 0 0 | 2 0 4 0 0 0 0 0 0 0 | * 24 * * * * * * | 1 1 0 0 0 x.3o. .. x.3x. .. & ♦ 18 | 18 9 9 0 | 6 9 9 3 0 0 0 | 0 3 3 3 0 0 0 0 0 0 | * * 32 * * * * * | 1 0 1 0 0 x.3o. .. .. x.3o. & ♦ 9 | 9 0 9 0 | 3 0 9 0 3 0 0 | 0 0 3 0 3 0 0 0 0 0 | * * * 32 * * * * | 0 1 0 1 0 xx3ox .. xx .. ..&#x & ♦ 18 | 12 9 6 12 | 2 6 3 2 0 6 6 | 0 1 0 1 0 2 3 3 0 0 | * * * * 48 * * * | 0 0 2 0 0 xx3ox .. .. xo ..&#x & ♦ 12 | 6 3 6 12 | 2 0 3 1 0 6 12 | 0 0 1 0 0 2 0 3 0 3 | * * * * * 96 * * | 0 0 1 1 0 xx .. .. .. xo3oo&#x & ♦ 8 | 3 1 6 6 | 0 0 3 0 2 3 6 | 0 0 0 0 1 0 0 3 2 0 | * * * * * * 48 * | 0 0 0 2 0 .. ox3oo .. xo ..&#x & ♦ 5 | 0 0 4 6 | 0 0 0 0 1 0 9 | 0 0 0 0 0 0 0 0 2 3 | * * * * * * * 96 | 0 0 0 1 1 ------------------------+----+---------------+-------------------------+---------------------------------+-------------------------+------------- x.3o.3o. x.3x. .. & ♦ 24 | 36 12 12 0 | 24 18 18 4 0 0 0 | 6 12 12 6 0 0 0 0 0 0 | 3 3 4 0 0 0 0 0 | 8 * * * * x.3o.3o. .. x.3o. & ♦ 12 | 18 0 12 0 | 12 0 18 0 4 0 0 | 3 0 12 0 6 0 0 0 0 0 | 0 3 0 4 0 0 0 0 | * 8 * * * xx3ox .. xx3xo ..&#x ♦ 36 | 36 18 18 36 | 12 18 18 6 0 36 36 | 0 6 6 6 0 12 9 18 0 9 | 0 0 2 0 6 6 0 0 | * * 16 * * xx3ox .. .. xo3oo&#x & ♦ 15 | 9 3 12 18 | 3 0 9 1 3 9 27 | 0 0 3 0 3 3 0 9 6 9 | 0 0 0 1 0 3 3 3 | * * * 32 * .. ox3oo .. xo3oo&#x ♦ 6 | 0 0 6 9 | 0 0 0 0 2 0 18 | 0 0 0 0 0 0 0 0 6 9 | 0 0 0 0 0 0 0 6 | * * * * 16
© 2004-2025 | top of page |