Acronym | gaddadid, gad || did |
Name |
great dodecahedron atop dodecadodecahedron, great-dodecahedral cupola |
Circumradius | sqrt[(8+2 sqrt(5))/11] = 1.064815 |
Dihedral angles | |
Confer |
|
As abstract polytope gaddadid is isomorphic to sissidadid, thereby interchanging pentagons and pentagrams resp. replacing gads by sissids, stappies by peppies, and paps by staps.
Incidence matrix according to Dynkin symbol
xo5ox5/2oo&#x → height = sqrt[(3 sqrt(5)-1)/8] = 0.844704
(gad || did)
o.5o.5/2o. | 12 * | 5 5 0 | 5 5 5 0 0 | 1 5 1 0
.o5.o5/2.o | * 30 | 0 2 4 | 0 1 4 2 2 | 0 2 2 1
--------------+-------+----------+----------------+----------
x. .. .. | 2 0 | 30 * * | 2 1 0 0 0 | 1 2 0 0
oo5oo5/2oo&#x | 1 1 | * 60 * | 0 1 2 0 0 | 0 2 1 0
.. .x .. | 0 2 | * * 60 | 0 0 1 1 1 | 0 1 1 1
--------------+-------+----------+----------------+----------
x.5o. .. | 5 0 | 5 0 0 | 12 * * * * | 1 1 0 0
xo .. ..&#x | 2 1 | 1 2 0 | * 30 * * * | 0 2 0 0
.. ox ..&#x | 1 2 | 0 2 1 | * * 60 * * | 0 1 1 0
.o5.x .. | 0 5 | 0 0 5 | * * * 12 * | 0 1 0 1
.. .x5/2.o | 0 5 | 0 0 5 | * * * * 12 | 0 0 1 1
--------------+-------+----------+----------------+----------
x.5o.5/2o. ♦ 12 0 | 30 0 0 | 12 0 0 0 0 | 1 * * *
xo5ox ..&#x ♦ 5 5 | 5 10 5 | 1 5 5 1 0 | * 12 * *
.. ox5/2oo&#x ♦ 1 5 | 0 5 5 | 0 0 5 0 1 | * * 12 *
.o5.x5/2.o ♦ 0 30 | 0 0 60 | 0 0 0 12 12 | * * * 1
© 2004-2024 | top of page |