Acronym gaddadid, gad || did Name great dodecahedron atop dodecadodecahedron,great-dodecahedral cupola Circumradius sqrt[(8+2 sqrt(5))/11] = 1.064815 Dihedral angles at {5} between gad and pap:   arccos(-sqrt[(9-4 sqrt(5))/4]) = 96.778652° at {5} between did and pap:   arccos(sqrt[(9-4 sqrt(5))/4]) = 83.221348° at {5/2} between did and stappy:   arccos(sqrt[(9-4 sqrt(5))/4]) = 83.221348° at {3} between pap and pap:   ... at {3} between pap and stappy:   ... Confer orbiform relative: sidrebcu   general polytopal classes: segmentochora

As abstract polytope gaddadid is isomorphic to sissidadid, thereby interchanging pentagons and pentagrams resp. replacing gads by sissids, stappies by peppies, and paps by staps.

Incidence matrix according to Dynkin symbol

```xo5ox5/2oo&#x   → height = sqrt[(3 sqrt(5)-1)/8] = 0.844704
(gad || did)

o.5o.5/2o.    | 12  * |  5  5  0 |  5  5  5  0  0 | 1  5  1 0
.o5.o5/2.o    |  * 30 |  0  2  4 |  0  1  4  2  2 | 0  2  2 1
--------------+-------+----------+----------------+----------
x. ..   ..    |  2  0 | 30  *  * |  2  1  0  0  0 | 1  2  0 0
oo5oo5/2oo&#x |  1  1 |  * 60  * |  0  1  2  0  0 | 0  2  1 0
.. .x   ..    |  0  2 |  *  * 60 |  0  0  1  1  1 | 0  1  1 1
--------------+-------+----------+----------------+----------
x.5o.   ..    |  5  0 |  5  0  0 | 12  *  *  *  * | 1  1  0 0
xo ..   ..&#x |  2  1 |  1  2  0 |  * 30  *  *  * | 0  2  0 0
.. ox   ..&#x |  1  2 |  0  2  1 |  *  * 60  *  * | 0  1  1 0
.o5.x   ..    |  0  5 |  0  0  5 |  *  *  * 12  * | 0  1  0 1
.. .x5/2.o    |  0  5 |  0  0  5 |  *  *  *  * 12 | 0  0  1 1
--------------+-------+----------+----------------+----------
x.5o.5/2o.    ♦ 12  0 | 30  0  0 | 12  0  0  0  0 | 1  *  * *
xo5ox   ..&#x ♦  5  5 |  5 10  5 |  1  5  5  1  0 | * 12  * *
.. ox5/2oo&#x ♦  1  5 |  0  5  5 |  0  0  5  0  1 | *  * 12 *
.o5.x5/2.o    ♦  0 30 |  0  0 60 |  0  0  0 12 12 | *  *  * 1
```

 © 2004-2021 top of page