Acronym pabex hax
Name partially biexpanded hemihexeract,
truncated tetrahedral duoalterprism
Circumradius sqrt(11)/2 = 1.658312
Coordinates (1/sqrt(8), 1/sqrt(8), 3/sqrt(8); 1/sqrt(8), 1/sqrt(8), 3/sqrt(8))   & all permutations of either coord. subset, all even changes of sign in either coord. subset
Face vector 288, 1440, 2688, 2208, 756, 84
Confer
general polytopal classes:
scaliform   partial Stott expansions  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

xo3xx3ox xo3xx3ox&#zx   → height = 0
(tegum sum of 2 bi-inverted tutdips)

o.3o.3o. o.3o.3o.     & | 288 |   2   4   4 |   4   4   2   4   12   8 |  2   8  2   4  12   4  12   4   4 |  4  4  1  4  12   8  1   4 |  2  2  4  4
------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------
x. .. .. .. .. ..     & |   2 | 288   *   * |   2   2   0   0    4   0 |  1   4  1   0   4   2   4   2   0 |  2  2  0  2   4   4  1   2 |  1  2  2  2
.. x. .. .. .. ..     & |   2 |   * 576   * |   1   1   1   2    0   2 |  1   4  1   3   4   0   3   0   2 |  3  3  1  2   7   3  0   1 |  2  1  3  3
oo3oo3oo oo3oo3oo&#x    |   2 |   *   * 576 |   0   0   0   0    4   2 |  0   0  0   0   4   2   4   2   1 |  0  0  0  2   4   4  1   2 |  0  2  2  2
------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------
x.3x. .. .. .. ..     & |   6 |   3   3   0 | 192   *   *   *    *   * |  1   2  0   0   2   0   0   0   0 |  2  1  0  2   2   1  0   0 |  1  1  2  1
x. .. .. .. x. ..     & |   4 |   2   2   0 |   * 288   *   *    *   * |  0   2  1   0   0   0   2   0   0 |  1  2  0  0   2   2  0   1 |  1  1  1  2
.. x.3o. .. .. ..     & |   3 |   0   3   0 |   *   * 192   *    *   * |  1   0  1   2   2   0   0   0   0 |  2  2  1  2   2   2  0   0 |  2  1  2  2
.. x. .. .. x. ..     & |   4 |   0   4   0 |   *   *   * 288    *   * |  0   2  0   2   0   0   0   0   1 |  2  2  1  0   4   0  0   0 |  2  0  2  2
xo .. .. .. .. ..&#x  & |   3 |   1   0   2 |   *   *   *   * 1152   * |  0   0  0   0   1   1   1   1   0 |  0  0  0  1   1   2  1   1 |  0  2  1  1
.. xx .. .. .. ..&#x  & |   4 |   0   2   2 |   *   *   *   *    * 576 |  0   0  0   0   2   0   2   0   1 |  0  0  0  1   4   2  0   1 |  0  1  2  2
------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------
x.3x.3o. .. .. ..     &   12 |   6  12   0 |   4   0   4   0    0   0 | 48   *  *   *   *   *   *   *   * |  2  0  0  2   0   0  0   0 |  1  1  2  0
x.3x. .. .. x. ..     &   12 |   6  12   0 |   2   3   0   3    0   0 |  * 192  *   *   *   *   *   *   * |  1  1  0  0   1   0  0   0 |  1  0  1  1
.. x.3o. x. .. ..     &    6 |   3   6   0 |   0   3   2   0    0   0 |  *   * 96   *   *   *   *   *   * |  0  2  0  0   0   2  0   0 |  1  1  0  2
.. x.3o. .. x. ..     &    6 |   0   9   0 |   0   0   2   3    0   0 |  *   *  * 192   *   *   *   *   * |  1  1  1  0   1   0  0   0 |  2  0  1  1
xo3xx .. .. .. ..&#x  &    9 |   3   6   6 |   1   0   1   0    3   3 |  *   *  *   * 384   *   *   *   * |  0  0  0  1   1   1  0   0 |  0  1  1  1
xo .. ox .. .. ..&#x  &    4 |   2   0   4 |   0   0   0   0    4   0 |  *   *  *   *   * 288   *   *   * |  0  0  0  1   0   0  1   1 |  0  2  1  0
xo .. .. .. xx ..&#x  &    6 |   2   3   4 |   0   1   0   0    2   2 |  *   *  *   *   *   * 576   *   * |  0  0  0  0   1   1  0   1 |  0  1  1  1
xo .. .. .. .. ox&#x  &    4 |   2   0   4 |   0   0   0   0    4   0 |  *   *  *   *   *   *   * 288   * |  0  0  0  0   0   2  2   0 |  0  3  0  1
.. xx .. .. xx ..&#x       8 |   0   8   4 |   0   0   0   2    0   4 |  *   *  *   *   *   *   *   * 144 |  0  0  0  0   4   0  0   0 |  0  0  2  2
------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------
x.3x.3o. .. x. ..     &   24 |  12  36   0 |   8   6   8  12    0   0 |  2   4  0   4   0   0   0   0   0 | 48  *  *  *   *   *  *   * |  1  0  1  0
x.3x. .. .. x.3o.     &   18 |   9  27   0 |   3   9   6   9    0   0 |  0   3  3   3   0   0   0   0   0 |  * 64  *  *   *   *  *   * |  1  0  0  1
.. x.3o. .. x.3o.     &    9 |   0  18   0 |   0   0   6   9    0   0 |  0   0  0   6   0   0   0   0   0 |  *  * 32  *   *   *  *   * |  2  0  0  0
xo3xx3ox .. .. ..&#x  &   24 |  12  24  24 |   8   0   8   0   24  12 |  2   0  0   0   8   6   0   0   0 |  *  *  * 48   *   *  *   * |  0  1  1  0
xo3xx .. .. xx ..&#x  &   18 |   6  21  12 |   2   3   2   6    6  12 |  0   1  0   1   2   0   3   0   3 |  *  *  *  * 192   *  *   * |  0  0  1  1
xo3xx .. .. .. ox&#x  &   12 |   6   9  12 |   1   3   2   0   12   6 |  0   0  1   0   2   0   3   3   0 |  *  *  *  *   * 192  *   * |  0  1  0  1
xo .. ox xo .. ox&#zx      8 |   8   0  16 |   0   0   0   0   32   0 |  0   0  0   0   0   8   0   8   0 |  *  *  *  *   *   * 36   * |  0  2  0  0
xo .. ox .. xx ..&#x  &    8 |   4   4   8 |   0   2   0   0    8   4 |  0   0  0   0   0   2   4   0   0 |  *  *  *  *   *   *  * 144 |  0  1  1  0
------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------
x.3x.3o. .. x.3o.     &   36 |  18  72   0 |  12  18  24  36    0   0 |  3  12  6  24   0   0   0   0   0 |  3  4  4  0   0   0  0   0 | 16  *  *  *
xo3xx3ox xo .. ox&#zx &   48 |  48  48  96 |  16  24  16   0  192  48 |  4   0  8   0  32  48  48  48   0 |  0  0  0  4   0  16  6  12 |  * 12  *  *
xo3xx3ox .. xx ..&#x  &   48 |  24  72  48 |  16  12  16  24   48  48 |  4   8  0   8  16  12  24   0  12 |  2  0  0  2   8   0  0   6 |  *  * 24  *
xo3xx .. .. xx3ox&#x      36 |  18  54  36 |   6  18  12  18   36  36 |  0   6  6   6  12   0  18   9   9 |  0  2  0  0   6   6  0   0 |  *  *  * 32

© 2004-2024
top of page