Acronym | pabex hax |
Name |
partially biexpanded hemihexeract, truncated tetrahedral duoalterprism |
Circumradius | sqrt(11)/2 = 1.658312 |
Coordinates | (1/sqrt(8), 1/sqrt(8), 3/sqrt(8); 1/sqrt(8), 1/sqrt(8), 3/sqrt(8)) & all permutations of either coord. subset, all even changes of sign in either coord. subset |
Face vector | 288, 1440, 2688, 2208, 756, 84 |
Confer |
|
External links |
Incidence matrix according to Dynkin symbol
xo3xx3ox xo3xx3ox&#zx → height = 0 (tegum sum of 2 bi-inverted tutdips) o.3o.3o. o.3o.3o. & | 288 | 2 4 4 | 4 4 2 4 12 8 | 2 8 2 4 12 4 12 4 4 | 4 4 1 4 12 8 1 4 | 2 2 4 4 ------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------ x. .. .. .. .. .. & | 2 | 288 * * | 2 2 0 0 4 0 | 1 4 1 0 4 2 4 2 0 | 2 2 0 2 4 4 1 2 | 1 2 2 2 .. x. .. .. .. .. & | 2 | * 576 * | 1 1 1 2 0 2 | 1 4 1 3 4 0 3 0 2 | 3 3 1 2 7 3 0 1 | 2 1 3 3 oo3oo3oo oo3oo3oo&#x | 2 | * * 576 | 0 0 0 0 4 2 | 0 0 0 0 4 2 4 2 1 | 0 0 0 2 4 4 1 2 | 0 2 2 2 ------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------ x.3x. .. .. .. .. & | 6 | 3 3 0 | 192 * * * * * | 1 2 0 0 2 0 0 0 0 | 2 1 0 2 2 1 0 0 | 1 1 2 1 x. .. .. .. x. .. & | 4 | 2 2 0 | * 288 * * * * | 0 2 1 0 0 0 2 0 0 | 1 2 0 0 2 2 0 1 | 1 1 1 2 .. x.3o. .. .. .. & | 3 | 0 3 0 | * * 192 * * * | 1 0 1 2 2 0 0 0 0 | 2 2 1 2 2 2 0 0 | 2 1 2 2 .. x. .. .. x. .. & | 4 | 0 4 0 | * * * 288 * * | 0 2 0 2 0 0 0 0 1 | 2 2 1 0 4 0 0 0 | 2 0 2 2 xo .. .. .. .. ..&#x & | 3 | 1 0 2 | * * * * 1152 * | 0 0 0 0 1 1 1 1 0 | 0 0 0 1 1 2 1 1 | 0 2 1 1 .. xx .. .. .. ..&#x & | 4 | 0 2 2 | * * * * * 576 | 0 0 0 0 2 0 2 0 1 | 0 0 0 1 4 2 0 1 | 0 1 2 2 ------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------ x.3x.3o. .. .. .. & ♦ 12 | 6 12 0 | 4 0 4 0 0 0 | 48 * * * * * * * * | 2 0 0 2 0 0 0 0 | 1 1 2 0 x.3x. .. .. x. .. & ♦ 12 | 6 12 0 | 2 3 0 3 0 0 | * 192 * * * * * * * | 1 1 0 0 1 0 0 0 | 1 0 1 1 .. x.3o. x. .. .. & ♦ 6 | 3 6 0 | 0 3 2 0 0 0 | * * 96 * * * * * * | 0 2 0 0 0 2 0 0 | 1 1 0 2 .. x.3o. .. x. .. & ♦ 6 | 0 9 0 | 0 0 2 3 0 0 | * * * 192 * * * * * | 1 1 1 0 1 0 0 0 | 2 0 1 1 xo3xx .. .. .. ..&#x & ♦ 9 | 3 6 6 | 1 0 1 0 3 3 | * * * * 384 * * * * | 0 0 0 1 1 1 0 0 | 0 1 1 1 xo .. ox .. .. ..&#x & ♦ 4 | 2 0 4 | 0 0 0 0 4 0 | * * * * * 288 * * * | 0 0 0 1 0 0 1 1 | 0 2 1 0 xo .. .. .. xx ..&#x & ♦ 6 | 2 3 4 | 0 1 0 0 2 2 | * * * * * * 576 * * | 0 0 0 0 1 1 0 1 | 0 1 1 1 xo .. .. .. .. ox&#x & ♦ 4 | 2 0 4 | 0 0 0 0 4 0 | * * * * * * * 288 * | 0 0 0 0 0 2 2 0 | 0 3 0 1 .. xx .. .. xx ..&#x ♦ 8 | 0 8 4 | 0 0 0 2 0 4 | * * * * * * * * 144 | 0 0 0 0 4 0 0 0 | 0 0 2 2 ------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------ x.3x.3o. .. x. .. & ♦ 24 | 12 36 0 | 8 6 8 12 0 0 | 2 4 0 4 0 0 0 0 0 | 48 * * * * * * * | 1 0 1 0 x.3x. .. .. x.3o. & ♦ 18 | 9 27 0 | 3 9 6 9 0 0 | 0 3 3 3 0 0 0 0 0 | * 64 * * * * * * | 1 0 0 1 .. x.3o. .. x.3o. & ♦ 9 | 0 18 0 | 0 0 6 9 0 0 | 0 0 0 6 0 0 0 0 0 | * * 32 * * * * * | 2 0 0 0 xo3xx3ox .. .. ..&#x & ♦ 24 | 12 24 24 | 8 0 8 0 24 12 | 2 0 0 0 8 6 0 0 0 | * * * 48 * * * * | 0 1 1 0 xo3xx .. .. xx ..&#x & ♦ 18 | 6 21 12 | 2 3 2 6 6 12 | 0 1 0 1 2 0 3 0 3 | * * * * 192 * * * | 0 0 1 1 xo3xx .. .. .. ox&#x & ♦ 12 | 6 9 12 | 1 3 2 0 12 6 | 0 0 1 0 2 0 3 3 0 | * * * * * 192 * * | 0 1 0 1 xo .. ox xo .. ox&#zx ♦ 8 | 8 0 16 | 0 0 0 0 32 0 | 0 0 0 0 0 8 0 8 0 | * * * * * * 36 * | 0 2 0 0 xo .. ox .. xx ..&#x & ♦ 8 | 4 4 8 | 0 2 0 0 8 4 | 0 0 0 0 0 2 4 0 0 | * * * * * * * 144 | 0 1 1 0 ------------------------+-----+-------------+--------------------------+-----------------------------------+----------------------------+------------ x.3x.3o. .. x.3o. & ♦ 36 | 18 72 0 | 12 18 24 36 0 0 | 3 12 6 24 0 0 0 0 0 | 3 4 4 0 0 0 0 0 | 16 * * * xo3xx3ox xo .. ox&#zx & ♦ 48 | 48 48 96 | 16 24 16 0 192 48 | 4 0 8 0 32 48 48 48 0 | 0 0 0 4 0 16 6 12 | * 12 * * xo3xx3ox .. xx ..&#x & ♦ 48 | 24 72 48 | 16 12 16 24 48 48 | 4 8 0 8 16 12 24 0 12 | 2 0 0 2 8 0 0 6 | * * 24 * xo3xx .. .. xx3ox&#x ♦ 36 | 18 54 36 | 6 18 12 18 36 36 | 0 6 6 6 12 0 18 9 9 | 0 2 0 0 6 6 0 0 | * * * 32
© 2004-2024 | top of page |