Acronym pabex hix (alt.: thiddipcup)
Name partially bi-expanded hexateron,
thiddip cupoliprism
Circumradius sqrt(17/12) = 1.190238
Face vector 36, 108, 126, 66, 14
Confer
uniform relative:
hix  
related segmentotera:
pexhix   n/d,2n/d-dipcup  
general polytopal classes:
partial Stott expansions   scaliform   segmentotera   lace simplices  
External
links
polytopewiki  

This scaliform polyteron can be obtained from hix by two consecutive partial Stott expansions within axial duoprismatic subsymmetry only. – The corresponding mono-expansion in the same sequence is pexhix.

The 4D shadow of this polyteron, i.e. its lacing edge size variation down such that it results in zero height and then considering its 4D hull only, would be known as triddep.


Incidence matrix according to Dynkin symbol

xx3xo xx3ox&#x   → height = 1/sqrt(3) = 0.577350
(thiddip || antipara thiddip)

o.3o. o.3o.    | 18  * | 1 1  2  2  0 0 0 | 1 2 2 1  2  2  2  1 0 0 0 0 | 2 1 1 2 2 1 2 1 1 0 0 0 | 1 2 1 1 1 0
.o3.o .o3.o    |  * 18 | 0 0  0  2  2 1 1 | 0 0 0 0  2  1  2  2 1 2 2 1 | 0 0 0 1 2 2 1 1 2 1 1 2 | 0 1 1 2 1 1
---------------+-------+------------------+-----------------------------+-------------------------+------------
x. .. .. ..    |  2  0 | 9 *  *  *  * * * | 1 2 0 0  2  0  0  0 0 0 0 0 | 2 1 0 2 2 1 0 0 0 0 0 0 | 1 2 1 1 0 0
.. x. .. ..    |  2  0 | * 9  *  *  * * * | 1 0 2 0  0  2  0  0 0 0 0 0 | 2 0 1 2 0 0 2 1 0 0 0 0 | 1 2 1 0 1 0
.. .. x. ..    |  2  0 | * * 18  *  * * * | 0 1 1 1  0  0  1  0 0 0 0 0 | 1 1 1 0 1 0 1 0 1 0 0 0 | 1 1 0 1 1 0
oo3oo oo3oo&#x |  1  1 | * *  * 36  * * * | 0 0 0 0  1  1  1  1 0 0 0 0 | 0 0 0 1 1 1 1 1 1 0 0 0 | 0 1 1 1 1 0
.x .. .. ..    |  0  2 | * *  *  * 18 * * | 0 0 0 0  1  0  0  0 1 1 1 0 | 0 0 0 1 1 1 0 0 0 1 1 1 | 0 1 1 1 0 1
.. .. .x ..    |  0  2 | * *  *  *  * 9 * | 0 0 0 0  0  0  2  0 0 2 0 1 | 0 0 0 0 2 0 1 0 2 1 0 2 | 0 1 0 2 1 1
.. .. .. .x    |  0  2 | * *  *  *  * * 9 | 0 0 0 0  0  0  0  2 0 0 2 1 | 0 0 0 0 0 2 0 1 2 0 1 2 | 0 0 1 2 1 1
---------------+-------+------------------+-----------------------------+-------------------------+------------
x.3x. .. ..    |  6  0 | 3 3  0  0  0 0 0 | 3 * * *  *  *  *  * * * * * | 2 0 0 2 0 0 0 0 0 0 0 0 | 1 2 1 0 0 0
x. .. x. ..    |  4  0 | 2 0  2  0  0 0 0 | * 9 * *  *  *  *  * * * * * | 1 1 0 0 1 0 0 0 0 0 0 0 | 1 1 0 1 0 0
.. x. x. ..    |  4  0 | 0 2  2  0  0 0 0 | * * 9 *  *  *  *  * * * * * | 1 0 1 0 0 0 1 0 0 0 0 0 | 1 1 0 0 1 0
.. .. x.3o.    |  3  0 | 0 0  3  0  0 0 0 | * * * 6  *  *  *  * * * * * | 0 1 1 0 0 0 0 0 1 0 0 0 | 1 0 0 1 1 0
xx .. .. ..&#x |  2  2 | 1 0  0  2  1 0 0 | * * * * 18  *  *  * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0
.. xo .. ..&#x |  2  1 | 0 1  0  2  0 0 0 | * * * *  * 18  *  * * * * * | 0 0 0 1 0 0 1 1 0 0 0 0 | 0 1 1 0 1 0
.. .. xx ..&#x |  2  2 | 0 0  1  2  0 1 0 | * * * *  *  * 18  * * * * * | 0 0 0 0 1 0 1 0 1 0 0 0 | 0 1 0 1 1 0
.. .. .. ox&#x |  1  2 | 0 0  0  2  0 0 1 | * * * *  *  *  * 18 * * * * | 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 1 1 1 0
.x3.o .. ..    |  0  3 | 0 0  0  0  3 0 0 | * * * *  *  *  *  * 6 * * * | 0 0 0 1 0 0 0 0 0 1 1 0 | 0 1 1 0 0 1
.x .. .x ..    |  0  4 | 0 0  0  0  2 2 0 | * * * *  *  *  *  * * 9 * * | 0 0 0 0 1 0 0 0 0 1 0 1 | 0 1 0 1 0 1
.x .. .. .x    |  0  4 | 0 0  0  0  2 0 2 | * * * *  *  *  *  * * * 9 * | 0 0 0 0 0 1 0 0 0 0 1 1 | 0 0 1 1 0 1
.. .. .x3.x    |  0  6 | 0 0  0  0  0 3 3 | * * * *  *  *  *  * * * * 3 | 0 0 0 0 0 0 0 0 2 0 0 2 | 0 0 0 2 1 1
---------------+-------+------------------+-----------------------------+-------------------------+------------
x.3x. x. ..     12  0 | 6 6  6  0  0 0 0 | 2 3 3 0  0  0  0  0 0 0 0 0 | 3 * * * * * * * * * * * | 1 1 0 0 0 0
x. .. x.3o.      6  0 | 3 0  6  0  0 0 0 | 0 3 0 2  0  0  0  0 0 0 0 0 | * 3 * * * * * * * * * * | 1 0 0 1 0 0
.. x. x.3o.      6  0 | 0 3  6  0  0 0 0 | 0 0 3 2  0  0  0  0 0 0 0 0 | * * 3 * * * * * * * * * | 1 0 0 0 1 0
xx3xo .. ..&#x   6  3 | 3 3  0  6  3 0 0 | 1 0 0 0  3  3  0  0 1 0 0 0 | * * * 6 * * * * * * * * | 0 1 1 0 0 0
xx .. xx ..&#x   4  4 | 2 0  2  4  2 2 0 | 0 1 0 0  2  0  2  0 0 1 0 0 | * * * * 9 * * * * * * * | 0 1 0 1 0 0
xx .. .. ox&#x   2  4 | 1 0  0  4  2 0 2 | 0 0 0 0  2  0  0  2 0 0 1 0 | * * * * * 9 * * * * * * | 0 0 1 1 0 0
.. xo xx ..&#x   4  2 | 0 2  2  4  0 1 0 | 0 0 1 0  0  2  2  0 0 0 0 0 | * * * * * * 9 * * * * * | 0 1 0 0 1 0
.. xo .. ox&#x   2  2 | 0 1  0  4  0 0 1 | 0 0 0 0  0  2  0  2 0 0 0 0 | * * * * * * * 9 * * * * | 0 0 1 0 1 0
.. .. xx3ox&#x   3  6 | 0 0  3  6  0 3 3 | 0 0 0 1  0  0  3  3 0 0 0 1 | * * * * * * * * 6 * * * | 0 0 0 1 1 0
.x3.o .x ..      0  6 | 0 0  0  0  6 3 0 | 0 0 0 0  0  0  0  0 2 3 0 0 | * * * * * * * * * 3 * * | 0 1 0 0 0 1
.x3.o .. .x      0  6 | 0 0  0  0  6 0 3 | 0 0 0 0  0  0  0  0 2 0 3 0 | * * * * * * * * * * 3 * | 0 0 1 0 0 1
.x .. .x3.x      0 12 | 0 0  0  0  6 6 6 | 0 0 0 0  0  0  0  0 0 3 3 2 | * * * * * * * * * * * 3 | 0 0 0 1 0 1
---------------+-------+------------------+-----------------------------+-------------------------+------------
x.3x. x.3o.     18  0 | 9 9 18  0  0 0 0 | 3 9 9 6  0  0  0  0 0 0 0 0 | 3 3 3 0 0 0 0 0 0 0 0 0 | 1 * * * * *
xx3xo xx ..&#x  12  6 | 6 6  6 12  6 3 0 | 2 3 3 0  6  6  6  0 2 3 0 0 | 1 0 0 2 3 0 3 0 0 1 0 0 | * 3 * * * *
xx3xo .. ox&#x   6  6 | 3 3  0 12  6 0 3 | 1 0 0 0  6  6  0  6 2 0 3 0 | 0 0 0 2 0 3 0 3 0 0 1 0 | * * 3 * * *
xx .. xx3ox&#x   6 12 | 3 0  6 12  6 6 6 | 0 3 0 2  6  0  6  6 0 3 3 2 | 0 1 0 0 3 3 0 0 2 0 0 1 | * * * 3 * *
.. xo xx3ox&#x   6  6 | 0 3  6 12  0 3 3 | 0 0 3 2  0  6  6  6 0 0 0 1 | 0 0 1 0 0 0 3 3 2 0 0 0 | * * * * 3 *
.x3.o .x3.x      0 18 | 0 0  0  0 18 9 9 | 0 0 0 0  0  0  0  0 6 9 9 3 | 0 0 0 0 0 0 0 0 0 3 3 3 | * * * * * 1
or
o.3o. o.3o.    & | 36 |  1  1  2  2 | 1  2  2  1  4  3 | 2 1 1  3 2  3 1 | 1 3 2
-----------------+----+-------------+------------------+-----------------+------
x. .. .. ..    & |  2 | 18  *  *  * | 1  2  0  0  2  0 | 2 1 0  2 2  1 0 | 1 3 1
.. x. .. ..    & |  2 |  * 18  *  * | 1  0  2  0  0  1 | 2 0 1  2 0  2 1 | 1 2 2
.. .. x. ..    & |  2 |  *  * 36  * | 0  1  1  1  1  0 | 1 1 1  1 1  1 0 | 1 2 1
oo3oo oo3oo&#x   |  2 |  *  *  * 36 | 0  0  0  0  2  2 | 0 0 0  2 1  2 1 | 0 2 2
-----------------+----+-------------+------------------+-----------------+------
x.3x. .. ..    & |  6 |  3  3  0  0 | 6  *  *  *  *  * | 2 0 0  2 0  0 0 | 1 2 1
x. .. x. ..    & |  4 |  2  0  2  0 | * 18  *  *  *  * | 1 1 0  0 1  0 0 | 1 2 0
.. x. x. ..    & |  4 |  0  2  2  0 | *  * 18  *  *  * | 1 0 1  0 0  1 0 | 1 1 1
.. .. x.3o.    & |  3 |  0  0  3  0 | *  *  * 12  *  * | 0 1 1  1 0  0 0 | 1 1 1
xx .. .. ..&#x & |  4 |  1  0  1  2 | *  *  *  * 36  * | 0 0 0  1 1  1 0 | 0 2 1
.. xo .. ..&#x & |  3 |  0  1  0  2 | *  *  *  *  * 36 | 0 0 0  1 0  1 1 | 0 1 2
-----------------+----+-------------+------------------+-----------------+------
x.3x. x. ..    &  12 |  6  6  6  0 | 2  3  3  0  0  0 | 6 * *  * *  * * | 1 1 0
x. .. x.3o.    &   6 |  3  0  6  0 | 0  3  0  2  0  0 | * 6 *  * *  * * | 1 1 0
.. x. x.3o.    &   6 |  0  3  6  0 | 0  0  3  2  0  0 | * * 6  * *  * * | 1 0 1
xx3xo .. ..&#x &   9 |  3  3  3  6 | 1  0  0  1  3  3 | * * * 12 *  * * | 0 1 1
xx .. xx ..&#x     8 |  4  0  4  4 | 0  2  0  0  4  0 | * * *  * 9  * * | 0 2 0
xx .. .. ox&#x &   6 |  1  2  2  4 | 0  0  1  0  2  2 | * * *  * * 18 * | 0 1 1
.. xo .. ox&#x     4 |  0  2  0  4 | 0  0  0  0  0  4 | * * *  * *  * 9 | 0 0 2
-----------------+----+-------------+------------------+-----------------+------
x.3x. x.3o.    &  18 |  9  9 18  0 | 3  9  9  6  0  0 | 3 3 3  0 0  0 0 | 2 * *
xx3xo xx ..&#x &  18 |  9  6 12 12 | 2  6  3  2 12  6 | 1 1 0  2 3  3 0 | * 6 *
xx3xo .. ox&#x &  12 |  3  6  6 12 | 1  0  3  2  6 12 | 0 0 1  2 0  3 3 | * * 6

© 2004-2025
top of page